DEPARTMENT OF MECHANICAL ENGINEERING

M.TECH. (MECHANICAL ENGINEERING)

SARDAR VALLABHBHAI NATIONAL INSTITUTE OF TECHNOLOGY Ichchhanath, Surat-395007, Gujarat, India www.svnit.ac.in

Vision and Mission of Institute

Vision statement

To be one of the leading technical institutes disseminating globally acceptable education, effective industrial training and relevant research output.

Mission statement

To be a globally accepted center of excellence in technical education catalyzing absorption, innovation, diffusion and transfer of high technologies resulting in enhanced quality for all the stakeholders.

Vision and Mission of the Department

Vision statement

Perceives to be a globally accepted centre of quality technical education based on innovation and academic excellence.

Mission statement

Strives to disseminate technical knowledge to its undergraduate, post graduate and research scholars to meet intellectual, ethical and career challenges for sustainable growth of humanity, nation and global community.

PROGRAMME EDUCATIONAL OBJECTIVES (PEO)

The overall educational objective for **Master of Technology in Mechanical Engineering** is to educate students with excellent technical capabilities in the mechanical engineering discipline, who will be responsible citizens and continue their professional advancement through life-long learning.

As mechanical engineers with expertise in **Mechanical Engineering**, postgraduates are prepared with following educational objectives:

PEO1	Knowledge: Impart broad technical knowledge in mechanical engineering discipline with research attitude, problem solving techniques and hands-on skill.
PEO2	Career: Provide successful career with professional ethics and responsibilities as a leading or participating role in mechanical engineering, R & D organization, academia and other fields or to pursue Ph.D./higher studies.
PEO3	Communication: Communicate verbally, in writing or audio-visually with others.
PEO4	Learning : Encourage the importance of life-long learning skill and ware of contemporary global issues for the successful professional career through self-study, participation and professional development courses.

PROGRAM OUTCOMES (PO)

PO1	An ability to independently carry out research /investigation and development
	work to solve practical problems
PO2	An ability to write and present a substantial technical report/document.
PO3	Students should be able to demonstrate a degree of mastery over the area as per
	the specialization of the program. The mastery should be at a level higher than the
	requirements in the appropriate bachelor program.
PSO1	Design, analyse and develop thermal, fluid and manufacturing systems using
	innovative research, modern tools and techniques.
PSO2	Demonstrate technical and professional skills to solve mechanical engineering
	problems for the benefits of industry and society.

COURSE STRUCTURE FOR M.TECH.(MECHANICAL ENGINEERING)

SEMESTER –I

Code No	de No					Exan	n Scheme			National hour	
	Subject	L	Т	Р	T	heory	Tuto.	Pract.	Total	Credits	of learning
					Hrs.	Marks	Marks	Marks			(Approx.)
MEME101	Core 1 Numerical Methods and Computations	3	1	0	3	100	25	-	125	4	70
MEME103	Core 2 Computer Aided Engineering	3	0	2	3	100	-	50	150	4	85
MEME105	Core 3 Advanced Thermal and Fluid Engineering	3	0	2	3	100	-	50	150	4	85
	Elective 1										55
MEME111	1. Electric Vehicles and Advanced I C Engines										
MEME113	2. Additive Manufacturing	_	_		_					_	
MEME115	3. Advanced Vibrations in Rotor Systems	3	0	0	3	100	-	-	100	3	
MEME117	4. Industrial Tribology										
MEME119	9 5. Power Plant Engineering										
	Elective 2										55
MEME121	1. Optimization Techniques										
MEME123	2. Industrial Robotics										
MEME125	3. Concurrent Engineering										
MEME127	4. Computational Fluid Dynamics	3	0	0	3	100	-	-	100	3	
MEME129	5. Design of Refrigeration and Air Conditioning										
MEME131	 Operation Planning and Control 										
MEME107	Software Practice	0	0	4	-	-	-	50		2	70
MEME109	Laboratory Practice	0	0	4	-	-	-	50		2	70
METMV01 METMP01	Vocational training Professional Experience/Research Internship (Optional) (Only for PG diploma in Mechanical /Exit)	0	0	10						5	200
	······································	Tot	al C	redi	ts	1	1	1	I	22	490

SEMESTER –II

					Exam Scheme						National
Code No.		_	Т	_	Th	eory	Tuto.	Pract.		~ ~	hour of
0000110	Subject	L		Р	Hrs.	Marks	Marks	Marks	Total	Credits	learning (Approx.)
MEME102	Core 4 Computer Integrated Manufacturing	3	1	2	3	100	25	50	175	5	100
MEME104	Core 5 Mechanical Design Analysis	3	1	0	3	100	25	0	125	4	70
	Elective 3										
MEME112	1. Renewable Energy Systems										
MEME114	2. Design of Pressure Vessels										
MEME116	3. Theory and Design of Cryogenic Systems	3	0	0	3	100	-	00	100	3	55
MEME118	4. Quality Engineering and Management										
MEME120	5. Advanced Welding Technology										
	Elective 4										
MEME122	1. Design of Experiments										
MEME124	2. Design and Analysis of Composite Structures		0	0	2	100			100		55
MEME126	3. Combustion for Propulsion Systems	3	0	0	3	100	-	-	100	3	55
MEME128	4. Design of Heat Exchangers										
MEME130	5. Non Destructive Testing										
	Institute Elective										
MEME172	1. Industrial Safety										
MEME174	2. Intelligent Manufacturing Systems										
MEME176	3. Energy Conservation, Management and Audit	3	0	0	3	100	-	-	100	3	55
MEME178	4. Energy and Buildings										
MEME180	5. Instrumentation and Experimental Methods										
MEME106	Mini Project	0	0	4	2	-	-	50	50	2	70
METMV02	Vocational training										
METMP02	Professional										200
	Internship (Optional)	0	0	10						5	
	(Only for PG diploma in Mechanical /Exit)										
		Т	otal	cred	lits					20	405

SEMESTER –III

						Exan	n Scheme				National
Code No	Subject				T	heory	Tuto.	Pract.			hour of
Code 110.			T	Р	Hrs.	Marks	Marks	Marks	Total	Credits	learning (Approx.)
	MOOC Course-I *	-	-	-						3/4	70/80
	MOOC Course-II *	-	-	-						3/4	70/80
MEME295	Dissertation Preliminaries	_	_	-	-	-	-	350	350	14	560
Total Credits							20-22	700-720			

SEMESTER -IV

						Exam	Scheme				National
Codo No					Theory Tuto. Pract.				hour of		
Coue No.	Subject	L	Т	Р	Hrs	Marke	Morke	Morke	Total	Credits	learning
					1115.			1 1121 N 5			(Approx.)
MEME296	Dissertation	-	-	-	-	-	-	600	600	20	800
	Total Credits						20	800			

Total Credits: 22+20+20-22+20 = 82-84

CREDIT MATRIX

Category		Credits to be earned										
	Sem- I	Sem - II	Sem- III	Sem - IV	Total							
Core Courses	12	09	-	-	21							
Elective Courses	06	09	-	-	15							
Laboratory Practice	02		-	_	02							
Laboratory Practice	02	-	-	-	02							
MOOC Courses	-	-	06-08	-	06-08							
Mini Project		02			02							
Dissertation	-	-	14	20	34							
Total Credits	22	20	20-22	20	82-84							

MEME101	:	NUMERICAL METHODS AND	L	Т	Р	Credits
		COMPUTATIONS	3	1	0	04

At the end of the course the students will be able to:

Explain the fundamental of numerical methods and applications in engineering
problems
Implement solution procedures for solving linear and non-linear algebraic
equations
Learn how to solve definite integrals by using cubic spline, Romberg and initial
value problems and boundary value problems numerically
Solve ordinary differential equations (odes), and partial differential equations
(PDEs) on a computer
Acquire working knowledge of computational complexity, accuracy, stability, and
errors in solution procedures
Solve one-dimensional optimization problems using optimization algorithm

2. <u>Syllabus:</u>

1.	Introduction	(03 Hours)
	Introduction to Computer Aided Engineering Analysis, Measuring Error	rs, Sources of
	Error, Binary Representation of numbers, Floating Point Representation, I	Propagation of
	Errors, Taylor Theorem Revisit	
2.	Differentiation	(04 Hours)
	Primer on Differential Calculus, Differentiation of Continuous Functions, I	Differentiation
	of Discrete Functions	
3.	Nonlinear Equations	(04 Hours)
	Solving Quadratic Equations Exactly, Solving Cubic Equations Exact	tly, Bisection
	Method, Newton-Raphson Method, Secant Method, False-Position Metho	d
4.	Simultaneous Linear Equations	(05 Hours)
	Introduction to Matrix Algebra, Systems of Equations, Gaussian Elimin	nation, Gauss-
	Seidel Method, LU Decomposition, Gauss-Seidel Method, Adequacy	of Solutions,
	Eigenvalues and Eigenvectors, Cholesky and LDLT Method	
5 .	Interpolation	(04 Hours)
	Background of Interpolation, Direct Method, Newton's Divided Differ	ence Method,
	Lagrange Method, Spline Method	
6 .	Regression	(05 Hours)
	Primer on Statistical Terminology, Introduction to Regression, Linea	r Regression,
	Nonlinear Regression, Adequacy of Regression Models	
7.	Integration	(05 Hours)
	Primer on Integral Calculus, Trapezoidal Rule, Simpson's 1/3rd Ru	ule, Romberg
	Integration, Gauss-Quadrature Rule, Discrete Data Integration, Imprope	er Integration,
	Simpson's 3/8 Rule	

8.	Ordinary Differential Equations	(05 Hours)
	Primer on Ordinary Differential Equations, Initial Value Problems, Eul	er's Methods,
	Runge-Kutta methods, Predictor - Corrector Method, Higher Order/Co	oupled ODEs,
	Boundary Value Problems, Shooting Method, Finite Difference Method	
9.	Partial Differential Equations	(05 Hours)
	Introduction to Partial Differential Equations, Parabolic Partial Different	tial Equations,
	Elliptic Partial Differential Equations	
10.	. Optimization	(05 Hours)
	Golden Section Search Method, Newton's Method, Multidimensional	Direct Search
	Method, Multidimensional Gradient Method, Simplex Method	
	(Total Lect	ure Hours: 45)

3. **Books Recommended:**

1	S.C. Chapra, R.P. Canale, "Numerical Methods for Engineers", 7 th edition, McGraw hill, 2015.
2	B.S. Grewal, "Numerical Methods in Engineering & Science", 11 th edition, Khanna
-	
	Publication, 2013.
3	W. Cheney, D. Kincaid, "Numerical Mathematics and Computing", 7 th edition,
	Cengage, 2013
1	C. Corold P. Wheetley, "Applied Numerical Analysis", 7th adition, Degreen Education
4	C. Geraid, F. Wheatey, Applied Numerical Anarysis, 7 edition, Featson Education
	India, 2007.
5	E Isaacson H B Keller "Analysis of Numerical Methods" Dover Publications 1994
5	

MEME103	:	COMPUTER AIDED ENGINEERING	L	Т	Р	Credits
			3	0	2	04

At the end of the course the students will be able to:

CO1	Explain the concept of computer graphics, drafting, and modelling using different commands and graphical user interface
CO2	Apply the concept of transformation for generating different positions of given problem with defined geometry
CO3	Create 3D models assemblies and generative drawings of a given engineering part or product
CO4	Apply the knowledge of programming for complex shape required in engineering for drafting or modelling
CO5	Determine the coordinates of space curves and parametric curves required for generating features in CAD models
CO6	Apply the knowledge of approximate methods (FDM/FEM) to solve engineering problems and to analyze status of variable in domain through various interpolation approaches.

2. Syllabus:

Computer Graphics:	(15 Hours)
Basics of Computer Aided Design, Introduction to Computer graphics,	CAD/CAM
hardware, 2D & 3D Transformations.	
Plane Curves and Space Curves:	
Parametric non parametric curves – cubic splines – Bezier curves, B-spline cur	ves.
3-D Modeling:	(15 Hours)
Solid modeling, modeling approaches-coordinate system-basic	features-
viewing/visualization-hidden line removal. Introduction to Computer Aided	Drafting and
modeling using software approach. Programming techniques in drafting/ mode	ling.
Numerical Analysis:	(15 Hours)
Finite Difference Method and Finite Element Method-direct approach, variatio	nal approach
and weighted residual approach, iso-parametric elements, interpolation functio	ons elemental
matrix, assembly and boundary conditions, condensation, solution algorithms.	Application
of FEM in elastic plane stress, plane strain and anisymmetric problem. Applica	ation of FEM
to lubrication and thermal problems.	

(Total Lecture Hours: 45)

3. Books Recommended:

1	I. Zeid, Mastering CAD/CAM, Tata Mcgraw-Hill Education Private Limited, 2005.
2	A.D. Belegundu and T.R. Chandrupatla, Finite Elements in Engineering, Prentice Hall
	of India Private Ltd., 1997.
3	J.N. Reddy, An Introduction to the Finite Element Method, Tata Mcgraw-Hill Education
	Drivesta Limited 2005
	Private Limited, 2005.
4	D. Rogers, J.A. Adams, Mathematical Elements for Computer Graphics, Tata Mcgraw
	Lill Education Drivets Limited 2002
	HII Education Private Limited, 2002.
5	C. S. Krishnamoorthy, S. Rajeev, A. Rajaraman, Computer Aided Design: Software and
	Analytical Tools, Second Edition Nerosa Publishing House, 2000
	Analytical Tools, Second Edition Natosa Fublishing House, 2009.

List of Practicals

- 1. Sketching of conceptual design through Drafting of a given engineering component
- 2. Programming In drafting for a given sketch or mechanical component
- 3. Creating a 3d model of mechanical components exploring various features of CAD tools.
- 4. Developing relational sketches and model for designing mechanical components.
- 5. Creating communication drawing using generative approach for manufacturing requirement of given engineering part or product.
- 6. Creating assemblies for designing digital product through CAD software.
- 7. Creating a digital models and surfaces of non-geometric nature through parametric curves.
- 8. Creating presentation animation for digital communication of engineering products.
- 9. Solving linear problem for a given engineering problems using 1D approach using FEM software
- 10. Solving linear problem for a given engineering problems using, 2D approach using FEM software
- 11. Solving linear problem for a given engineering problems using 3D approach using FEM software
- 12. Demonstrating FEM software for Nonlinear problems using FEM software
- 13. Solving given engineering problem using FDM by computation approach.

MEME105	:	ADVANCED THERMAL AND FLUID ENGINEERING	L	Τ	Р	Credits
			3	0	2	04

At the end of the course the students will be able to:

CO1	Explain the concepts of availability and irreversibility and conduct exergy
	analysis of thermodynamic systems
CO2	Evaluate the performance of vapor power cycles, gas power cycles, combined vapor
	and gas power cycles, and refrigeration cycles
CO3	Solve complex heat transfer problems of conduction / convection / radiation
CO4	Solve complex heat transfer problems of boiling and condensation
CO5	Apply governing equations to solve different fluid flow problems
CO6	Explain fluid flow measurements and flow visualization techniques

2. Syllabus:

Reynolds transport theorem, Navier-Stokes equation, analytical solutions to simple flows, Couette flow, Poiseuille flow, concepts of lift and drag, flow separation and drag, boundary layer theory, boundary layer flow over a flat plate and with non-zero pressure gradient, free shear flow, characteristics of turbulent flows, Reynolds Averaged Navier Stokes (RANS) equations, compressible flow through convergent and Laval nozzles, normal and oblique shock waves, micro-flows, fluid flow measurements and flow visualization techniques.

(Total Lecture Hours: 45)

3. Books Recommended:

1	Y. A. Cengel, M. A. Boles, and M. Kanoglu. Thermodynamics - An Engineering Approach, 9 th Edition, McGraw Hill, 2019.
2	R. K. Rajput. Thermal Engineering, 11 th Edition, Laxmi Publications, 2020
3	J. P. Holman and S. Bhattacharya. Heat Transfer, 10 th Edition, McGraw Hill, 2017.
4	Y. A. Cengel and J. M. Cimbala. Fluid Mechanics: Fundamentals and Applications, 4 th Edition, McGraw Hill, 2018
5	F. M. White and H. Xue. Fluid Mechanics, 9 th Edition, McGraw Hill, 2021

4. List of Practicals (Any 08)

- 1. Experiments to characterize the pyrolysis behavior of selected biomass fuels.
- 2. To determine the yield from gasification of different biomass.
- 3. Preparation and performance analysis of biofuels on IC engines.
- 4. Experimental investigation of thermal performance of tube finned heat exchanger
- 5. Calculation of effectiveness and efficiency of the fin for different heat fluxes.
- 6. Flow & heat transfer simulation for various engineering applications.
- 7. Two-phase flow experiments.
- 8. Comparison of flow measuring instruments measurement of static and dynamic characteristics of instruments.
- 9. Performance Test on Cascade Refrigeration System
- 10. Performance Tests on Internal Combustion Engines
- 11. Wind Tunnel Test
- 12. Pump Testing for determination of losses
- 13. Heat pipe experiment

MEME111	:	ELECTRIC VEHICLES AND ADVANCED	L	Τ	Р	Credits
			3	0	0	03

At the end of the course the students will be able to:

CO1	Compare the general specifications of various commercially available vehicle
CO2	Apply material and design considerations for various engine components
CO3	Evaluate effects of various parameters including use of alternate fuels on normal
	and abnormal combustion, emission and performance in CI and SI Engines
CO4	Compare basic layout and structure of EV and I C Engines
CO5	Estimate battery and motor sizing for various applications in two, three and four wheeler segment
CO6	Analyze Bus Rapid Transit Systems

2. Syllabus:

Introduction to I C Engines:	(03 hours)			
Historical Perspective, General Specifications of Engines used in various Two, Three and Four Wheelers. Air Standard Thermodynamic Cycles for I C Engines and its comparison with Fuel Air and Actual Cycle, Thermodynamic properties of working fluid.				
Material and Design Consideration for Engine Components				
Piston, Cylinder, Piston Rings, Connecting Rod, Cam Shafts, Crank Shafts etc.	•			
Gas Exchange Process:	(04 hours)			
Flow through valves, Analysis of suction and Exhaust Processes				
Combustion in SI and CI Engines: (0				
Combustion Phenomenon in SI and CI Engines, Normal and Abnormal combustion in SI and CI Engines, modelling combustion process in SI engines, Advanced mode combustion like HCCI, PCCI, AFCI, RCCI etc.				
Alternate Fuelled Engines :	(03 hours)			
Producer Gas, Biogas and Biodiesel Fuelled Engines				
Engine Emission:	(06 hours)			
Introduction to air pollution from SI and CI Engines, Photochemical smog, secondary pollutants, Formation of NO and NO2 in SI and CI Engines, M Particulate Matter formation, Composition of Particulates, soot structure, soot Measurement of emission, instrumentation for HC, CO, NOx and PM, EGF Particulate Filter.	primary and lechanism of ot formation, R and Diesel			
Introduction to Electric Vehicles :	(04 hours)			

Limitations of Internal Combustion Engines as Prime Mover, History of EV and EV Systems, Structure of Electric Vehicle covering basic Components, General Layout, Govt. policies on EV and its impact on automotive sector

EV Power Train:

(12 hours)

(03 hours)

Basic components like Battery, DC-AC Converters, Electric Motors, DC-DC Converters, Transmissions and ECUs. Battery and Motor Selection, Calculations for Motor and battery sizing for EV for Two, Three and Four Wheeler Applications, Thermal Management of Battery, Initial acceleration, rated vehicle velocity, maximum velocity and maximum gradeability of EV, Basic architecture of EV Drive Train.

Urban Transport :

Urban Bus Specifications, Bus Rapid Transit Systems

(Total Lecture Hours: 45)

3. **Books Recommended:**

1	Hiroshi Yamagata, The Science and Technology of Materials in Automotive Engine, CRC Press Inc.,2005
2	John B Heywood, Internal Combustion Engines Fundamentals. McGraw Hill (Indian Edition) 2017.
3	V Ganesan, Internal Combustion Engines. 4 th Edition. Tata Mc Graw Hill Edition
4	Mehrdad Ehsani, Yimin Gao, Modern Electric, Hybrid Electric, and Fuel Cell Vehicles., 2 nd edition, 2009.
5	Joseph Kent, Handbook of Electric Vehicles, Clanrye International, 2015

MEME113	:	ADDITIVE MANUFACTURING	L	Τ	Р	Credits
			3	0	0	03

At the end of the course the students will be able to:

CO1	Classify additive manufacturing processes and explain generic steps in additive
	manufacturing.
CO2	Explain principle, and mechanism of solid based, liquid based and powder based
	additive manufacturing processes.
CO3	Select a suitable additive manufacturing process for a given material and application.
CO4	Identify software related issues in additive manufacturing; and post processing
	aspects including defects and part quality.
CO5	Design and optimize a given part following guidelines and rules for part building.
CO6	Elaborate state of art in additive manufacturing.

2 Syllabus:

Introduction	(06 Hours)			
Definition, classification, stages of generic additive manufacturing process, benefits, applications, process selection, evaluation, benchmarking, future growth and opportunities				
Solid Based Processes	(06 hours)			
Basic principle and working of Fused Deposition Modelling process, liquefaction, solidification and bonding, bio extrusion, Laminated Object Manufacturing process, Multi jet process, typical materials and applications				
Liquid Based Processes	(06 Hours)			
Photo polymerization, principle and working of stereo lithography apparatus, scanning techniques, curing processes, typical materials and applications				
Powder Based Processes	(06 Hours)			
Powder fusion mechanism, powder handling and recycling, Principle Selective Laser Sintering, Laser Engineering Net Shaping process, Electro process parameters, typical materials and applications, safety consideration	and working of on Beam Melting, ns			
Additive Manufacturing Data Formats, Pre-processing & Post processing	(08 Hours)			
Additive manufacturing file formats, Defects and Issues in Data Formats; Part orientation and support structure generation, Model Slicing, Contour Path Generation, Build File preparation, Machine Set-up; Post Processing evaluation, support structure removal, Improvement of finish, geometry ar	Pre-processing – Generation, Tool – Product quality ad aesthetics.			

Design For Additive Manufacturing	(08 Hours)
Core concepts and objectives, Principles of design for manufacturin	g and assembly,
Constraint approach to design for additive manufacturing: Guidelines a	ind rules for part
building, Topology optimization and generative design, exploring design	freedom, design

Recent Trends in Additive Manufacturing

(05 Hours)

Composite 3D printing, Bio 3D printing of tissues and organs, Clay and Concrete 3D printing, 3D food printing, 3D printing in space, 4D printing

(Total Lecture Hours: 45)

3. Books Recommended:

tools.

1	I. Gibson, D. Rosen, B. Stucker, Additive Manufacturing Technologies, Springer Publisher, 2nd Edition, 2015
2	C. K. Chua, K. F. Leong, C. S. Lim, Rapid Prototyping – Principles and Applications,
	World Scientific, 3rd Edition, 2010.
3	C. P. Paul, A. N. Anoop, Additive Manufacturing - Principles, Technologies and
	Applications, Mc Graw Hill Education (I) Pvt. Ltd., 1st edition, 2021.
4	A. Bandyopadhyay and S. Bose, Additive Manufacturing, CRC Press, 2nd edition, 2015.
5	Diegel, Olaf, Axel Nordin, and Damien Motte. A Practical Guide to Design for Additive
	Manufacturing. Springer Singapore, 1st edition, 2019

MEME115	MEME115 : ADVANCED VIBRATIONS IN ROTOR SYSTEMS	L	Т	Р	Credits	
			3	0	0	03

At the end of the course the students will be able to:

CO1	Describe and Analyze free and forced vibration in machinery.
CO2	Explain Damped and Undamped vibration stability concepts.
CO3	Analyze and solve Non-Linear vibration problems.
CO4	Describe & Examine vibration analysis problems in rotor systems with non-linear effects included.
CO5	Illustrate the utility of instrumentation and terminology used in signal analysis for fault detection in rotating machinery.
CO6	Analyse various plots used in condition monitoring of rotors to predict rotor faults.

2. <u>Syllabus</u>:

Introduction	(05 hours)			
Free and forced vibrations with and without damping, transient vibrations, Laplace transform				
formulation.				
	1			
Isolation and Stability Criterion	(10 hours)			
Vibration isolation and transmissibility, undamped vibration absorbers, self-exite	ed vibrations,			
criterion of stability, effect of friction on stability.				
	I			
Nonlinear Vibration	(10 hours)			
Free vibration with nonlinear spring force or nonlinear damping, phase plane, energy curves, Lienard's graphical construction, methods of isoclines, random vibration, power spectral density, bandwidth in vibration, numerical methods for vibration analysis, vibration of continuous systems, Euler equation for beams, effect of rotary inertia and shear deformation.				
Vibration Analysis of Rotors	(10 hours)			
Transverse vibrations single, two and three rotor systems, critical speeds of shafts, torsional vibrations of rotors: one, two and three disc rotor system, frequency of torsional vibration systems, coupling of torsional and bending vibrations due to pretwist and eccentricity, rotor faults, forward and backward rotor whirl model, variable elasticity effects in rotating systems, flow induced vibration in rotating systems, Newkirk effect, stresses in rotating disc and blade, disc of uniform strength, thermal stresses.				

Diagnostic Techniques	(10 hours)
Introduction to diagnostic maintenance and instrumentation in machinery vibration	on, amplitude,
frequency and phase characteristics, signature analysis-trend plot, time domain plot	
domain plot, FFT, spectrum plot, fault detection transducers, artificial intelligen	ce techniques
applied to vibration analysis.	

(Total Lecture Hours: 45)

3. Books Recommended:

.

1	S. S. Rao. Mechanical Vibrations, 4th Edition, Pearson Education, 2007.
2	L. Meirovitch. Fundamentals of Vibrations, McGraw Hill, 1st edition, 2001.
3	E. Krämer. Dynamics of Rotors and Foundations, Springer-Verlag, New York, 1993.
4	R. Subbiah and J. E. Littleton. Rotor and Structural Dynamics of Turbomachinery-A Practical, 1st edition, 2018
5	P. Luciano Gatti. Advanced Mechanical Vibrations: Physics, Mathematics and Applications. CRC Press; 1st edition 2020

MEME117	:	INDUSTRIAL TRIBOLOGY	L	Т	Р	Credits
			3	0	0	03

At the end of the course the students will be able to:

CO1	Analyze the lubrication and wear behaviour under different conditions
CO2	Identify and select suitable type of lubrication system for a given problem
CO3	Design and evaluate the performance parameters for sliding element bearings.
CO4	Design and evaluate the performance characteristics of rolling element bearings.
CO5	Select suitable strategy for instrumentation and inspection of selected feature/part
CO6	Compute relevant features in given system to ensure proper lubrication

2. Syllabus:

1.	Surfaces, Friction and Wear	(10 Hours)		
	Topography of Surfaces, Surface features, Surface interaction, Theory of Friction,			
	Sliding and Rolling Friction, Friction properties of metallic and non -metal	lic materials,		
	Friction in extreme conditions, Wear, types of wear, Mechanism of	wear, wear		
	resistance materials, Surface treatment, Surface modifications, Surface coa	atings.		
2.	Lubrication Theory	(08 Hours)		
	Lubricants and their physical properties lubricants standards, Lubrication	n Regimes in		
	Hydrodynamic lubrication, Reynolds Equation, Thermal, inertia and turb	ulent effects,		
	Elasto hydrodynamic (EHD) magneto hydrodynamic lubrication, l	Hydro static		
	lubrication, Gas Lubrication, Solid lubrication.			
3.	Design of Fluid Film Bearings	(09 Hours)		
	Design and performance analysis of thrust and journal bearings, Full, Parti	al, Fixed and		
	pivoted journal bearings design, Lubricant flow and delivery, Power lo	oss, Heat and		
	temperature of steady and dynamically loaded journal bearings, Spec	ial bearings,		
	Hydrostatic Bearing design.			
4.	Rolling Element Bearings	(09 Hours)		

Geometry and kinematics, Materials and manufacturing processes, Contact stresses, Hertzian stress equation, Load divisions, Stresses and deflection, Axial loads and rotational effects, Bearing life capacity and variable loads, ISO standards, Oil films and their effects, Rolling Bearings Failures.

5. Tribo Measurement and Instrumentation

(09 Hours)

Surface Topography measurements, Electron microscope, friction and wear measurements, Laser method, Instrumentation, International standards, Bearings performance measurements, Bearing vibration measurement.

(Total Lecture Hours: 45)

3. Books Recommended:

1	Bharat Bhushan, Introduction to Tribology, Johan Wieley& Sons, New York, 2nd edition, 2012
2	Basu S. K., Sengupta S. N., Ahuja B. B., "Fundamental of Tribology", PHI Learning
	Pvt, Ltd, New Delhi, 2009
3	G. Stachowiak and A. Batchelor. Engineering Tribology, Elsevier Science, 4th edition,
	2014
4	R. Gohar and H. Rahnejat. Fundamentals of Tribology, World Scientific Publishing
	Company, 3rd Edition, 2018
5	Harish Harani, Fundamentals of Engineering Tribology, Cambridge, 1st edition, 2017

MEME119	:	POWER PLANT ENGINEERING	L	Τ	Р	Credits
			3	0	0	03

At the end of the course the students will be able to:

CO1	Describe the mechanism of various types of steam boilers and steam turbines.
CO2	Design and Analyze boiler accessories, condenser, feed water heater, cooling
	tower.
CO3	Assess combustion mechanism, combustion equipment, heat balance sheet of
	boiler plant.
CO4	Describe the mechanism of non-conventional power generation and direct energy
	conversion.
CO5	Analyze the Gas turbine power plant to improve overall performance.
CO6	Evaluate power plant economy and evaluate steam power plant to improve
	performance.

2. Syllabus:

Introduction to Power Plants	(04 hours)
Introduction to sources of energy for power generation. Site selection criter plants, Principal types of power plants, Present status of power generation in In layouts of various types of power plants	ia for power ndia, General
Steam Generators and Accessories(10 hours)	
Classification of boilers, Description of boilers – Radiant type natural circulation boiler, High pressure forced circulation boilers, heat absorption in boilers, Circulations of down comers and riser, steam drum and its internals, supercritical steam generators, Fluidized bed combustion boilers – Bubbling and circulatory, Economizers, Air preheaters, Superheaters, De-superheaters, firing methods, Reheaters, fabric filters and bag house collector, electrostatic precipitators, feed water heaters, deaerator, ash handling system, Waste Heat Recovery Steam Generators (WHRSG), Numerical based on above theories	
Thermal Power Plants	(08 hours)

Fuels and combustion, Review of power cycles, coal fired power plant site selection, boiler, turbine, condensing plant and circulating water system, water treatment, fuel handling and fuel firing, ash handling and dust collection, Principles of co-generation, technical options for cogeneration.

Different pollutants due to thermal power plant and their effects on human health. Environment control of various pollutants such as particulate matter, oxides of Sulphur, oxides of nitrogen etc. Effluents from power plants, social and economic issues of power plants				
Ga	s Turbine Power Plant	(06 hours)		
Ger cyc adv ana	neral features and characteristics and their application power plants, Analysi les, components of gas turbine power plants, governing system of gas t rantages of G. T. plant, Gas and steam turbines, combined cycles – The lysis for optimum design, Numerical based on above theories	is of different curbine plant, ermodynamic		
Sol	ar and Wind based Power Generation	(06 hours)		
Energy available from the Sun and wind. General layout of solar thermal and solar photovoltaic power plants, Plant sizing for solar and wind, site selection criteria for wind and solar power plants, State and central Government policies for solar and wind power generation.				
Eco	onomics of Power Generation	(06 hours)		
Introduction, Load-Duration curves, Load factor, Capacity factor, Reserve factor, demand factor, Diversity factor, plant use factor, base load plant, peak load plant, power plant economics – electricity cost, fixed costs and depreciation, Present-Worth Concept, Incremental Heat Rate, Effect of Load Factor on Cost per kWh, Numerical based on above theories				
-	(Total Lectu 3. <u>Books Recommended:</u>	re Hours: 45)		
1	P. K. Nag, Power plant engineering, McGraw Hill Education, New Delhi,	2014		
2	M. M. Ei-Wakil, Power plant Technology, McGraw Hill Education, Ne edition, 2017	ew Delhi, 1 st		
3	R. K. Hegde, Power plant engineering, Pearson India Education, New Del	hi, 2015		
4	Arora & Domkundwar, Power plant engineering, Dhanpat Rai& Sons, N edition 2016	ew Delhi, 8 th		
5	P. C. Sharma, Power Plant Engineering, S.K. Kataria & Sons, New Delh	i, 3 rd edition,		

(05 hours)

Environmental Aspects of Power Station

2010.

MEME121	:	OPTIMIZATION TECHNIQUES	L	Т	Р	Credits
			3	0	0	03

At the end of the course the students will be able to:

1.	Explain the concept of optimization, related terms and formulate mathematical models
	for practical problems based on the information provided.
2.	Apply linear programming to solve real life linear programming problems
3.	solve transportation and transhipment problems, travelling salesman problem and
	integer programming
4.	determine solutions that will be deployed in real world situations after conducting
	sensitivity and post optimality analysis
5.	apply classical methods to solve nonlinear programming problems
6.	Apply evolutionary algorithms to solve complex engineering problems where classical
	methods are not suitable.

2. Syllabus:

Introduction	(04 hours)
Introduction to Optimization, Linear Programming - Formulation, Grap	hical method,
simplex method and special cases.	

Sensitivity and post optimality analysis

(08 hours)

Sensitivity Analysis and post optimality analysis of linear programming problems – changes in resources and objective function, changes affect feasibility and optimality, duality, dual simplex algorithm, generalize simplex algorithm.

Special types of linear programming problems	(06 hours)
Transportation problems, Transshipment problems, Travelling salesman proprogramming.	blems, Integer
Introduction to MATLAB and solving linear and nonlinear	(08 hours)
problems using MATLAB	
Introduction to MALAB, creating and manipulating vectors and matrix, user	
defined function, special built-in function to create special vectors and matrices,	
symbolic math, built-in function to solve linear programming problems.	
Nonlinear programming problems	(05 Hours)
Graphical method, convex function and convex region, necessary and sufficient conditions,	
Lagrangian method, Karush-Kuhn-Tucker (KKT) conditions, solving nonlinear problems using MATLAB.	

Evolutionary Algorithms	(14 hours)
Introduction to evolutionary algorithm, introduction to multi-objective optimi	zation, genetic

algorithms, differential evolution algorithm, Particle swarm optimization, tabu search, simulated Annealing technique, solving real life engineering problems using MATLAB.

(Total Lecture Hours: 45)

3. Books Recommended

1	F. S. Hillier, and G. J. Lieberman, Introduction to operations research: Concepts and
	Cases, Tata McGraw-Hill Education 8 th edition, 2008.
2	H. A. Taha, Operations research: an introduction. Pearson Education India, 10 th edition,
	2016.
3	S. S. Rao, Engineering optimization: theory and practice. John Wiley & Sons, 3 rd edition,
	2018.
4	Xin- She Yang, Nature-Inspired Optimization Algorithms. Elsevier, 1 st edition 2014.
5	D E Goldberg Genetic algorithms: in search optimization and machine learning
5	D. E. Goldberg, Genetic algorithms. In search, optimization and machine learning.
	Pearson Education India, 1 st edition 2008

MEME123	:	INDUSTRIAL ROBOTICS	L	Τ	Р	Credits
			3	0	0	03

At the end of the course the students will be able to:

CO 1	Explain the basics of robotic systems.
CO 2	Apply the concept of robot arm kinematics.
CO 3	Analyze statics and dynamics of robots.
CO 4	Analyze manipulator trajectories.
CO 5	Analyze control of robot manipulators.
CO 6	Illustrate robot programming, sensing and vision.

2. Syllabus:

Introduction	(04 Hours)			
Introduction to robots, robot manipulators, robot anatomy, coordinate systems, work				
envelope, types and classification, specifications, actuators and drives				
Mathematical Representation of Robots	(06 hours)			
Rotations and translation of vectors, transformations and Euler angle rep	presentations,			
homogenous transformations, representation of position and orientation of a	a rigid body,			
homogeneous transformations, Denavit- Hartenberg (D-H) notations and parameters,				
representation of joints, link representation using D-H parameters				
Forward and Inverse Kinematics	(05 Hours)			
Introduction, forward and inverse kinematics problems.				
Velocity and Statics Analysis	(06 Hours)			
Linear and angular velocity of links, velocity propagation, Jacobians				
manipulators, statics and force transformation of robotic manipulators, singularity analysis				
Robot Dynamic Analysis	(06 Hours)			

Introduction, forward and inverse dynamics, mass and inertia of links, Lagrangian formulation for equations of motion for robotic manipulators, Newton-Euler formulation method.

Trajectory Planning and Control

(11 Hours)

Joint and Cartesian space trajectory planning and generation, classical control concepts using the example of control of a single link, Independent joint PID control, control of a multi-link manipulator, nonlinear model based control schemes.

Force Control of Manipulators	(02 Hours)	
Hybrid position/force control.		
Robot Programming, Sensing and Vision	(05 hours)	

Robot Programming, Introduction to sensing and vision in robotics.

(Total Lecture Hours: 45)

3. Books Recommended:

1	A. Ghosal. Robotics: Fundamental Concepts and Analysis, Oxford University Press, 2006
2	J. J. Craig. Introduction to Robotics: Mechanics and Control, 4th edition, Pearson, 2018
3	R. J. Schilling. Fundamentals of Robotics Analysis and Control, Pearson Education India, 2015
4	K. S. Fu, R. C. Gonzalez, C. S. G. Lee. Robotics: Control, Sensing, Vision, and Intelligence, McGraw Hill 1987
5	S. K. Saha. Introduction to Robotics, McGraw Hill Education India, 2014

MEME125	:	CONCURRENT ENGINEERING	L	Т	Р	Credits
			3	0	0	03

At the end of the course the students will be able to:

CO1	Support the multi-disciplinary integrated product development teams and Plan and
	implement a new product development program.
CO2	Apply appropriate concurrent engineering tools and techniques to design and
	develop environment-friendly products by leveraging both manufacturing cost
	and lifecycle cost.
CO3	Determine the customer needs and ensure that the product design is robust and
	meets the professional standards with better quality.
CO4	Design and develop the products with high reliability, maintainability, and
	availability.
CO5	Apply the information technology tools for collaborative product design and
	development.
CO6	Demonstrate the applications of concurrent design of structures, products and
	components.

2. Syllabus:

Introduction	(07 hours)				
Motivation, definition, and philosophy of Concurrent Engineering (CE); sequential and					
concurrent processes; Principles of CE; Organizing for CE; CE teams and team dynamics;					
Role of CAD/CAM/CAE/CIM and automation in CE; Managing product development					
projects; Decomposition of product development stages; Benefits of CE; Implementation					
issues of CE.					
Concurrent Engineering Tools and Techniques (24 hours)					
Design for manufacturing (DFM), Design for assembly (DFA); Factors influencing form					
design; Casting and machining considerations; Design for manufacturing and Assembly					
(DFMA) guidelines and examples; Lifecycle design of products with circular economy					

concept; Design for environment (DFE) with examples; Design for (-to-) cost; Design for X (DFX); Value engineering. Design for quality; Taguchi's methods for designing robust products; Design of Experiments (DOE) with examples; Design optimization; Quality function deployment (QFD) with examples. Design for reliability, maintainability and availability with examples; Failure modes and effects analysis (FMEA); Fault tree analysis

(FTA); Rapid prototyping methods; Design simulation; Virtual and augmented reality environments for CE.

Role of Information Technology in Concurrent Engineering	(07 hours)			
Information technology (IT) components and functions; Artificia	al Intelligence for IT			
operations used for product design; Collaborative product develo	opment; Collaborative			
product commerce, Cloud IoT for CE.				

Selected Applications of Concurrent Engineering	(07 hours)			
Design of aerospace and naval structures made of composite materials	; Design of automotive			
components; Design of medical devices; Design of electronic products; Design of white				
goods parts.				

(Total Lecture Hours: 45)

3. <u>Books Recommended:</u>

.

1	B. Prasad. Concurrent Engineering Fundamentals I & II, Prentice Hall, New Jersey, 1996
2	I. Moustapha. Concurrent Engineering in Product Design and Development, New Age International, New Delhi, 2006
3	G. Boothroyd, P. Dewhurst, and W. Knight. Product Design for Manufacture and Assembly, 3rd Edition, Routledge, Boca Raton, 2010
4	J. R. Hartley. Concurrent Engineering: Shortening Lead Times, Raising Quality, and Lowering Costs, 4th Edition, Routledge, Boca Raton, 2017
5	K. T. Ulrich, S. D. Eppinger, and M. C. Yang. Product Design and Development, 7th Edition, McGraw Hill Education (India), Noida, 2020

MEME127	:	COMPUTATIONAL FLUID DYNAMICS	L	Τ	Р	Credits
			3	0	0	03

At the end of the course the students will be able to:

CO1	Explain major theories, approaches and methodologies used in CFD
CO2	Demonstrate actual implementation skills of CFD methods (e.g. boundary
	conditions, different numerical schemes etc.)
CO3	Acquire working knowledge of computational complexity, accuracy, stability,
	and errors in solution procedures
CO4	Develop numerical models for fluid flow and heat transfer problems
CO5	Illustrate of advanced numerical techniques such as LBM, Meshless techniques.
CO6	Model real life engineering designs with CFD analysis

2. Syllabus:

Introduction to Computational Fluid Dynamics and Principle of	(05 Hours)		
Conservation			
Introduction of Computational Fluid Dynamics: What, When, and Why?, C	FD Applications,		
Numerical vs Analytical vs Experimental, Conservation of mass, Newton	n's second law of		
motion, Expanded forms of Navier-Stokes equations, Conservation of energy principle,			
Special forms of the Navier-Stokes equations, Classification of second order partial			
differential equations, Initial and boundary conditions, Governing equations in generalized			
coordinates			
Fundamentals of Discretization	(08 Hours)		
Discretization principles: Pre-processing, Solution, Post processing, Finite	Element Method,		
Finite difference method, Well posed boundary value problem, Possible types of boundary			
conditions, Conservativeness, Boundedness, Transportiveness, Higher order schemes to			
FDM, Finite volume method (FVM), Illustrative examples: 1-D steady stat	e heat conduction		

without and with constant source term.

Finite Volume Method	(08 Hours)

Some Conceptual Basics and Illustrations through 1-D Steady State Diffusion Problems: Physical consistency, Overall balance, FV Discretization of a 1-D steady state diffusion type problem, Composite material with position dependent thermal conductivity, Four basic rules for FV Discretization of 1-D steady state diffusion type problem, Source term linearization, Implementation of boundary conditions

Discretization of Unsteady State Problems	(04 Hours)			
1-D unsteady state diffusion problems: implicit, fully explicit and Crank-Nicholson scheme,				
FVM for 2-D unsteady state diffusion problems				
Discretization of Convection-Diffusion Equations	(07 Hours)			
A Finite Volume Approach: Finite volume discretization of convection-d	iffusion problem:			
Central difference scheme, Upwind scheme, Exponential scheme and Hybrid scheme, Power				
law scheme, Generalized convection-diffusion formulation, Finite volume discretization of				
two-dimensional convection-diffusion problem, The concept of false diffusion, QUICK				
scheme				
Discretization of Navier Stokes Equations	(06 Hours)			
Discretization of the Momentum Equation: Stream Function-Vorticity approach and				
Primitive variable approach, Staggered grid and Collocated grid, SIMPLE Algorithm,				
SIMPLER Algorithm				

Special Topics		(07 Hours)
Unstructured Crid Formaulation	An avanuious of Einite Element Mathad	hour down along ont

Unstructured Grid Formulation, An overview of Finite Element Method, boundary element method, Lattice Boltzmann Method, Meshless Technique

(Total Lecture Hours: 45)

1	S. V. Patankar, Numerical Heat Transfer and Fluid Flow, CRC Press, Indian Edition, 2017.
2	T. J. Chung, Computational Fluid Dynamics, Cambridge University Press, 2nd edition, 2010
3	H. K. Versteeg & W. Malalasekera, An Introduction to Computational Fluid Dynamics, Pearson; 2nd edition, 2008
4	J. H. Ferziger and M.Peric, Computational Methods for Fluid Dynamics, Springer, 4th edition 2020

MEME129	:	DESIGN OF REFRIGERATION AND AIR CONDITIONING SYSTEMS	L	Т	Р	Credits
			3	0	0	03

At the end of the course the students will be able to:

CO1	Describe the properties of refrigerants and evaluate performance of the actual
	vapour compression refrigeration systems.
CO2	Evaluate the performance of compound vapour compression refrigeration systems
	for various applications.
CO3	Describe vapour absorption system for large cooling load application and evaluate
	its performance.
CO4	Explain working principles of non-conventional refrigeration systems and
	evaluate the performance of steam jet refrigeration system.
CO5	Compute cooling/heating loads for designing air conditioning systems for
	residential and commercial building.
CO6	Design the air duct systems for large commercial buildings.

2. Syllabus:

VAPOUR COMPRESSION REFRIGERATION SYSTEM	(15 Hours)		
Alternate Refrigerants - properties, applications, selection, mixed refrigerants, retrofit study,			
standard rating cycle for domestic refrigerator, refrigeration sys	tem components:		
compressors, condensers, expansion devices, evaporators, Multi stage	compression with		
water intercooler, liquid sub cooler, flash chamber, flash intercoolers and r	multiple expansion		
valves, multi evaporator systems, cascade refrigeration system, D	Design aspects of		
refrigeration system components, solid CO ₂ – dry ice cycle.			
VAPOUR ABSORPTION SYSTEMS	(07 Hours)		
VAPOUR ABSORPTION SYSTEMSTemperature concentration and enthalpy concentration diagrams, enth	(07 Hours) halpy balance for		
VAPOUR ABSORPTION SYSTEMSTemperature concentration and enthalpy concentration diagrams, enthvarious components of aqua ammonia systems, Vapour absorption s	(07 Hours) halpy balance for ystem- Electrolux		
VAPOUR ABSORPTION SYSTEMS Temperature concentration and enthalpy concentration diagrams, enth various components of aqua ammonia systems, Vapour absorption s refrigerator.	(07 Hours) halpy balance for ystem- Electrolux		
VAPOUR ABSORPTION SYSTEMSTemperature concentration and enthalpy concentration diagrams, enth various components of aqua ammonia systems, Vapour absorption s refrigerator.NON - CONVENTIONAL REFRIGERATION SYSTEMS	(07 Hours) halpy balance for ystem- Electrolux (07 Hours)		
VAPOUR ABSORPTION SYSTEMS Temperature concentration and enthalpy concentration diagrams, enth various components of aqua ammonia systems, Vapour absorption s refrigerator. NON - CONVENTIONAL REFRIGERATION SYSTEMS Steam jet refrigeration system, Performance analysis of steam jet refrigeration	(07 Hours) halpy balance for ystem- Electrolux (07 Hours) rigeration system,		

adiabatic demagnetization, vapour adsorption refrigeration system

AIR CONDITIONING	(16 Hours)
Review of air conditioning processes, summer and winter load calculation	ns, cooling/heating
load calculations, cooling coils, bypass factor, effective sensible he	eat factor, design
consideration for cooling coils, high latent heat load, design of evaporati	ve cooling system,
de-humidifiers and air washers, Comfort air conditioning, thermodynami	cs of human body,
comfort charts, effective temperature, central air conditioning system,	Air handling unit,
room air distributions, fluid flow and pressure losses, air filters, duct des	ign Equal pressure
drop method, velocity reduction method, static regain method, refu	rigeration and air
conditioning controls	

(Total Lecture Hours: 45)

٦

1	W. F. Stocker, and J. W. Jones, "Refrigeration and Air Conditioning", McGraw Hill, N. Y. 2nd edition, 2014
2	R. J. Dossat, "Principles of Refrigeration", John Wiley and Sons, 5th edition, 2001
3	C. P. Arora, Refrigeration and Air Conditioning, Tata McGraw Hill, 3rd edition, 2017
4	S. C. Arora and S. Domkundwar, A course in Refrigeration and Air-conditioning, Dhanpat Rai & Sons, 7thedition, 2003.
5	ASHRAE Fundamentals, Applications, Systems and Equipment, Handbook, 2005

MEME131	:	OPERATIONS PLANNING AND	L	Т	Р	Credits
			3	0	0	03

At the end of the course the students will be able to:

	-	
CO1	:	Apply the different concepts of operations, productivity and forecasting.
CO^2	•	Apply the tool related to the design of operations like capacity planning
002	•	ripping the tool related to the design of operations like expansion planning,
		constraint management, layout and location strategies.
CO3	•••	Analyse the operations using the concept of supply chain. Inventory management
		and Aggregate planning.
CO4	•	Evaluate the operations using the concept of Material requirement planning and
001	•	is the concept of the
		short term planning.
CO5	•••	Formulate, analyze, design and synthesize open-ended operation planning and
		control angles using the control of another along in a and control to the invest
		control problem using the various operation planning and control techniques.
CO6	:	Explain shop floor planning, order sequencing rules, and mathematical models
		for afficient production management
		101 efficient production management.

2. Syllabus:

Operations planning & Control	(03 Hours)
Operations and Productivity, Operations Strategy in a Global Environment	
Forecasting	(04 Hours)
Elements and steps in forecasting, Types of forecasting, Demand forec qualitative and quantitative methods, Errors in forecasting	asting using
Capacity Planning and Constraint Management	(04 Hours)
Process Strategies, Definition and measurement of capacity, Adjustin Quantitative methods for capacity planning decision.	ng capacity,
Layout and Location Strategy	04 Hours)
Types of layout. Design of layout, Factors affecting location decision. Mathem	natical model
for facility location and layout.	
Supply Chain	05 Hours)
The Supply Chain's Strategic Importance Sourcing Strategies, Supply Chain Ri	sk Managing
the Integrated Supply Chain Building the Supply Base, Supplier Evaluati	on, Supplier
Development	
Inventory Control and Management	(06 Hours)
Introduction, EOQ Models with and without shortage, Multi item Deterministi	c Model,
Dynamic and Fluctuating Models, Deterministic Model with price breaks and I	Probabilistic
inventory models. Selective Inventory control.	
Aggregate Planning:	(06 Hours)
Purpose, inputs of aggregate plan, Aggregate planning Processes and strategies,	, Methods for

aggregate planning, Aggregate planning in services.	
Material Requirement Planning and ERP	(07 Hours)
Just in Time, MRP input and output, MRP structure, MRP management, Lot si	zing
Technique and Extension of MRP, JIT and MRP in services, JIT to Die exchan	ige, ERP:
Introduction, Implementation, Advantages	
Short Term Scheduling	(06 Hours)
Introduction to Scheduling and Shop floor planning and control; order sequence	ing rules
and their performance based on different evaluation criteria; changeover costs	and job
sequence, Mathematical models of job sequencing.	

(Total Lecture Hours: 45)

1	Jay Heizer, Barry Render and Chuck Munson, Amit Sachan, Operations Management, Pearson Education, 2017
2	Everett E. Adam, Ronald J. Ebert, Production and Operations Management, 5th edition, Prentice Hall of India, New Delhi, 2012
3	E. S. Buffa and R. K. Sarin, Modern Production / Operations Management, John Wiley & Sons, 1994
4	Samuel Eilon, Elements of Production Planning and Control. New York: Macmillan; London: Collier-Macmillan, 1962
5	Lee J. Knajei & L. P. Ritzman, Operations Management, Pearson Education, Delhi, 2002

MEME107	:	SOFTWARE PRACTICE	L	Т	Р	Credits
			0	0	4	02

At the end of the course the students will be able to:

CO1	Explain data analysis, programming machine learning software's.
CO2	develop numerical solutions for linear and non-linear algebraic equations using
	computer programs
CO3	derive numerical solutions of initial value problems and boundary value
	problems.
CO4	solve ordinary differential equations (ODEs), and partial differential equations
	(PDEs) on a computer
CO5	develop code to solve one-dimensional optimization problems using the Golden
	Section Search method
CO6	show plotting of the graphs, writing equations and performing data analysis in
	Microsoft excel.

2. Syllabus:

Software:

- 1. Introduction to Origin software
- 2. Introduction to Minitab software
- 3. Introduction to Mathematica
- 4. Introduction to Mapple
- 5. Introduction to MATLAB
- 6. Introduction to functions of Microsoft Excel

Coding

- 1. Introduction to compiler, scripts, loops, logical statements
- 2. Finding of roots using Bisection method
- 3. Finding of roots using Newton-Rapson method
- 4. Solving ODE using Rung-Kutta method of 2nd order: Heun's method, Mid-point method, and Ralston's method
- 5. Solving ODE using Rung-Kutta method of 3rd order, and 4th order
- 6. Development of steady-state solver: (a) TDMA/ Line-by-line TDMA (b) Point-Jacobi (c) Gauss-Seidel Method (d) Gauss-Seidel over-relaxation Method
- 7. Development of transient solver: (a) Euler or Explicit scheme (b) Pure implicit scheme (c) Crank-Nicolson scheme (d) ADI
- 8. FDM code to solve PDE: elliptic equation
- 9. FDM code to solve PDE: parabolic equation
- 10. FDM code to solve PDE: hyperbolic equation

MEME109	••	LABORATORY PRACTICE	L	Т	Р	Credits
			0	0	4	02

At the end of the course the students will be able to:

CO 1	Demonstrate operation of identified machine/instrument/equipment
CO 2	Perform given practical task independently on machine/instrument
CO 3	Analyse and evaluate the observations and deduce conclusions therein
CO 4	Represent results graphically and deduce conclusions therein
CO 5	Demonstrate practical skills to work on identified problem
CO 6	Develop skills for team effort and coordination through group practical performance

2. <u>Practicals</u>:

Students will perform any 08 practicals in various laboratories. The indicative list (but not limited to) of practicals is as under:

- 1. Evaluation of effect of process parameters on micro structure and strength of a part fabricated by given casting process
- 2. To perform various erosion tests on given part
- 3. To perform various wear tests on given part
- 4. To perform various NDT inspection for surface and sub-surface defects on given part
- 5. Demonstration of various composite manufacturing processes
- 6. Measurement of various features using microscope/ vision measuring instrument
- 7. Measurement of surface roughness of a given specimen
- 8. Integrating CAD /CAM/3D printing CAE for given Product
- 9. Characterization and feature measurement on micro structure of given part with microscope
- 10. To conduct performance test on I C Engines
- 11. To study the different systems of automobile
- 12. Practicals pertaining to Welding Laboratory

MEME102	:	COMPUTER INTEGRATED MANUFACUTRING	L	Т	Р	Credits
			3	1	2	05

At the end of the course the students will be able to:

CO1	Classify type of Automation and CIM.
CO2	Develop the CNC Program for the given geometry for Drilling, Milling and
	Turning machines.
CO3	Develop the part program using APT.
CO4	Analyze the production flow based on part classification, identification and
	coding.
CO5	Evaluate the different types of flexibilities in manufacturing.
CO6	Explain and evaluate types and steps of computer aided process planning

2. Syllabus:

Introduction to CIM

Introduction to automation, Types of automation, Automation principles and strategies, Definition of CIM, CIM wheel, Evolution of CIM, Benefits of CIM, CIM hardware and software, Nature and role of the elements of CIM system, Development of CIM

Computer Aided Manufacturing

(18 Hours)

(05 Hours)

Components of NC/CNC system, Specification of CNC system, Classification of CNC machines, Constructional details of CNC machines, Axis designation, CNC control loops. Basic programming terms, Programming formats, Preparatory command, Miscellaneous functions, Machine zero, work zero and tool zero, Work offsets, Tool length offset and setup methods, Cutter radius offset, Machine zero return, Part programming for milling - linear and circular interpolation, subprogram, fixed/canned cycles, mirrors commands, machining large hole pattern, polar coordinates, round and rectangular pocket machining and cycles, subroutines, mirror, Part programming for lathe - lathe cycles, with and without tool nose radius feature, repetitive fixed cycle

Part Programming with Automatically Programmed Tools (APT)	(05 Hours)
Computer aided part programming, APT: Geometry, motions and auxiliary concycle commands, programming for geometry and drill cycle and hole pattern	mmands, drill
Group Technology	(08 Hours)
Definition, implementation considerations, benefits and applications, G.T. me search method, production flow analysis, Parts classification and coding, manufacturing attributes, Concept of composite component, Rank order cluste cell formation, Cell group tooling, Design rationalization, possibilities of int CAD/CAM	thods - visual Design and ring, machine egration with
Flexible Manufacturing System	(06 Hours)

Introduction, General Considerations for FMS, types of FMS, Flexibilities, their measurements, Computer control in FMS, Automated material handling systems, AGVs, Automatic storage and retrieval systems, Manufacturing cells, cellular v/s flexible manufacturing

Computer Aided Process Planning

(03 Hours)

Introduction to CAPP, Route card, Manual and computer aided process planning, steps, and types

(Total Lecture Hours: 45)

3. <u>Books Recommended:</u>

1	S.F. Krar, and A. Gill, CNC: Technology and Programming, McGraw-Hill, 1989
2	M. P. Groover, Automation, production systems, and computer-integrated manufacturing. Pearson Education India, 5th Edition, 2019
3	P. Radhakrishnan, S. Subramanyan, and V. Raju, CAD/CAM/CIM, New age International publishers, 3rd edition, 2011
4	P. N. Rao, CAD/CAM Principles and Applications, Tata McGraw Hill, 2nd Edition, 2006.
5	S. Kant Vajpayee, Principles of Computer Integrated Manufacturing, PHI, New Delhi, 1st edition, 1998

4. <u>List of Practicals</u>:

- 1. Demonstration of CNC Milling machine with user interface and calculating the Co-ordinates of given geometry in absolute and increment mode for cutter path.
- 2. Introduction of G codes and M codes and write the CNC part programming for a given geometry using Linear, Circular interpolation. (Using FANUC Controller)
- 3. Write the CNC part programming for a given geometry using Mirror and Subroutine. (Using FANUC Controller)
- 4. Write the CNC programming for a given geometry using Polar Co -ordinate for drilling cycles.
- 5. Write the CNC part programming for a given geometry using Tool Radius Compensation and Repeat loop for Peck Drilling Cycle. (Using FANUC Controller)
- 6. Introduction and programming of all canned cycle of Milling machine. (Using FANUC controller)
- 7. Demonstration and study of CNC Lathe machine with sample programming.
- 8. Write CNC programming for given geometry (Lathe) using stock removal cycles (Using FANUC controller)
- 9. Demonstration of FMS setup. (AS / RS, AGV, CNC Lathe, CNC Milling, Robot & CMM setup)
- Demonstration of Advance manufacturing Machines like AJM (Abrasive Jet Machine), EDM (Electro Discharge Machine), μ Machine (Micro Machine), VMS (Vision Measuring System).

MEME104	:	MECHANICAL DESIGN ANALYSIS	L	Т	Р	Credits
			3	1	0	04

At the end of the course the students will be able to:

CO1	Utilize the concept of theories of failure to machine components.
CO2	Evaluate the fatigue and creep behavior in machine parts and design against
	fracture.
CO3	Analyze impact, thermal properties and stresses in various machine elements like
	shafts and springs.
CO4	Design of various gear drives and gear boxes.
CO5	Design the various types of brakes, clutches and flywheel.
CO6	Design the fluid-film bearings, anti-friction bearings and I. C. engine components.

2. Syllabus:

Design process, factor of safety and reliability in design, review of failure theories, loading				
conditions and stress concentration, surface stresses and their failures, lubricant films and				
their effects, Hertzian contact stresses and their effect on load capacities of machine				
members, effect of inelastic strains and residual stresses on load capacity of machine				
components, tolerances, limits and fits in design.				
Design for Fatigue Strength (10 Hours)				
Stress variation, design for fluctuating stresses, influence of low and high cycle fatigue,				
design for a limited number of cycles, cumulative damage, acoustical and thermal fatigue,				
fatigue strength of mechanical joints, shaft design.				
Design for Creep and Fracture: Creep and creep rupture, creep data for long-life design,				
stress relaxation in bolts, creep analysis of thin cylinders, thick-walled cylinders and rotating				
discs, designing against fracture, stress intensity factors, linear elastic fracture mechanics				
approach, theories of brittle fracture, fundamental aspects of crack growth and fractures,				
crack analysis for different laminas.				
Thermal Properties and Stresses(10 Hours)				
Effect of temperature on short term and long-term properties, elementary thermal stresses in				
machine elements, stress relaxation in bolts at elevated temperatures, detrimental residual				
stresses, bolt tightening.				
Impact Energy: Energy methods-general and particular cases, longitudinal stress waves in				
elastic media, impact on bars, torsional impact on shafts and longitudinal impacts on helical				
springs, striking of two bars.				
Design of Brakes and Clutches: (09 Hours)				
Work, torque, and motion in brake and clutch systems, short contacts on the cylindrical				
surfaces of drums, long shoes on cylindrical surfaces, design of band and block brake, shoe				
brake, external and internal expanding brakes, drum and disc brakes, types of mechanical				
clutches, design of single and multiple disc clutches, cone and centrifugal clutch, selection				
of friction materials for brakes and clutches, temperature rise, railway brakes.				
Design of Bearings and Power Transmission Elements:(10 Hours)				

Selection of hydrodynamic and hydrostatic bearings, selection of anti-friction bearings,
classification of gears, design of spur, helical, bevel and worm gear drives, speed reducers
and gear boxes.
Design of Internal Combustion Engine Components and Flywheel: Cylinder and cylinder
liners, piston, connecting rod, crank-shaft and valve-gear mechanism, construction and
torque analysis of solid and rimmed flywheel, stresses in flywheel, design of engine flywheel.

(Total Lecture Hours: 45)

3. Books Recommended:

1	A. H. Burr and J. B. Cheatham, Mechanical Analysis and Design, Prentice-Hall, 1995
2	R. G. Budynas and J. K. Nisbett, Shigley's Mechanical Engineering Design, McGraw Hill Publications, 2016
3	J. A. Collins, H. Busby and G. Stabb, Mechanical Design of Machine Elements and Machines: A Failure Prevention Perspective, Wiley India, 2010
4	R. C. Juvinall and K. M. Marshek, Fundamentals of Machine Component Design, Wiley India, 2020
5	R. L. Norton, Machine Design: An Integrated Approach, Pearson Education, 2020.

MEME112	:	RENEWABLE ENERGY SYSTEMS	L	Т	Р	Credits
			3	0	0	03

At the end of the course the students will be able to:

CO1	design solar systems for a given energy utility by applying principles of solar energy conversion
CO2	design bio-energy based systems for a given utility by applying principles of bio- mass to bio-energy conversion
CO3	assess theoretical and practical performance of wind turbines including optimal tip speed ratio requirement
CO4	characterize different types of waste and compare various conversion technologies suitable for industrial applications in line with government approved RDF and MSW policies.
CO5	compare hydrogen production methods and use of hydrogen resource with other
	energy resources in present context
CO6	compare different types of fuel cells and understand its working

2. Syllabus:

(12 Hours)
imation of Solar
: Solar Thermal
plate collectors,
ncentrators, solar
on, Solar thermal
nversion of solar
s, Govt. policies.
d, Water based,
Thermal Energy

Biomass & Bioenergy

(12 Hours)

Biogas System: Anaerobic digestion, biogas production, Types of digesters, installation, operation and maintenance of biogas plants, Biogas plant manure utilisation and manure values, factors affecting biogas production, Biogas utilisation and storage, Compressed Biogas (CBG) production from agro waste; biogas for motive power generation, design calculations for biogas plants, Govt. policies. Liquid Biofuels: Biodiesel – The mechanism of transesterification, fuel characteristics of biodiesel, technical aspects of biodiesel/Ethanol and other liquid fuels

utilization in engine. Biomass gasification: Different types of gasifier, power generation and applications

Wind Energy Conversion Systems

(08 Hours)

(08 Hours)

History of wind energy, Current status and future prospects, Wind energy in India. Power available in the wind, Components of Wind Energy Conversion Systems, Horizontal and Vertical axis wind turbine, Wind turbine power and torque characteristics, Tip speed ratio, Optimal tip speed ratio, Wind speed prediction and forecasting, Betz limit, Govt. Policies.

Waste to Energy Conversion

Introducing Municipal Solid Waste Management; Waste Generation and characterization, Waste Processing Techniques; Source Reduction, Biological Conversion Products: Compost and Biogas, Incineration pyrolysis and Energy Recovery, waste plastic, RDF/Sewage utilization, Govt. Policies on MSW and RDF, Introduction to Microbial Fuel Cell.

Hydrogen Energy and Fuel Cells	(05 Hours)

Benefits of Hydrogen Energy, Hydrogen Production Technologies, Hydrogen Energy Storage, Use of Hydrogen Energy, Electrolysis, Bio-hydrogen Production, Biogas reformation to Syngas, Basic principle of working of fuel cell.

(Total Lecture Hours: 45)

1	J. A. Duffie and W.A. Beckman, Solar Engineering and Thermal Processes, John Wiley and Sons., 2013
2	H. S. Mukunda, Understanding Clean Energy and fuels from biomass. Wiley India Pvt.
	Ltd, 2011
3	K. M. Mital, Biogas Systems, Principle and Applications. New Age International Ltd, 1996
4	G. D. Rai, Non-Conventional Energy Sources, Khanna Publication, 1988
5	Prabir Basu, Biomass Gasification And Pyrolysis: Practical Design And Theory, Academic
	Press, 1st Edition, 2010

MEME114	:	DESIGN OF PRESSURE VESSELS	L	Τ	Р	Credits
			3	0	0	03

At the end of the course the students will be able to:

CO1	Illustrate the different types of loads and their effects in pressure vessel.
CO2	Evaluate the different types of stresses in pressure vessel.
CO3	Design the various supports of the pressure vessel.
CO4	Design the shells, heads and nozzles.
CO5	Apply the ASME & IS codes to Design pressure vessel.
CO6	Evaluate the various stresses under thermal and fatigue loadings.

2. Syllabus:

Introduction	(11 Hours)		
Overview of various parts of pressure vessels, classification of pressure vessels, applications, factors influencing the design of vessels - material selection, loads & types of failures.			
Stresses in pressure vessels	(11 Hours)		
stresses in circular ring, cylinder & sphere, membrane stresses in vessels under internal pressure, thick cylinders, multi layered cylinders, auto-frottage of thick cylinders and their significance, discontinuity and buckling stresses			
Design of pressure vessels as per ASME and IS code	(12 Hours)		
Introduction and importance of codes, Externally and internally pressurized vessels, tall vertical vessels, Supports for vertical & horizontal vessels, nozzles and flanges. shells and heads			
Pressure vessels with different conditions:	(11 Hours)		

Evaluation of pressure vessels for different conditions: hydro-test condition, thermal stresses, FEM analysis, Fatigue of pressure vessels.

(Total Lecture Hours: 45)

3. Books Recommended

1	J. F. Harvey. Theory and Design of Pressure Vessels, Springer US, 2007.
2	S. Chattopadhyay. Pressure Vessels: Design and Practice, CRC Press, 2004.
3	ASME Code Section 8 th Div 1, Div2, ASME, 2021.
4	A. S. Tooth. Pressure Vessel Design: Concepts and Principles, 1 st Edition, CRC Press, 2012.
5	D. R. Moss, M. M. Basic. Pressure Vessel Design Manual, 4 th Edition, Elsevier Science, 2012.

MEME116	:	THEORY AND DESIGN OF CRYOGENIC SYSTEMS	L	Τ	Р	Credits
			3	0	0	03

At the end of the course the students will be able to:

CO1	Select suitable cryogen and material for development of cryogenic system for
	different applications.
CO2	Design and analyze gas liquefaction system and cryogenic refrigeration systems
	including cryocoolers.
CO3	Select proper cryogenic insulating material and designing of cryogenic insulation.
CO4	Analyze gas purification and separation system using cryogenics.
CO5	Select and design storage, handling, and transfer systems for cryogens.
CO6	Design vacuum system for cryogenic application.

2. Syllabus:

INTRODUCTION AND APPLICATIONS	(02 Hours)		
CRYOGENICS FLUIDS	(02 Hours)		
Properties of air, Oxygen, Nitrogen, Hydrogen, Helium and its isotopes			
PROPERTIES AND SELECTION OF MATERIALS	(03 Hours)		
Study of material properties & their selection for cryogenic application.			
GAS LIQUEFACTION and REFRIGERATION SYSTEMS	(10 Hours)		
Basics of Refrigeration, Ideal system, Linde Hampson system, Precooled	d Linde Hampson		
system, Linde dual pressure system, Claude system, Heylandt system,	, Kapitza system,		
Collins cycle			
CRYOGENIC INSULATION	(07 Hours)		
Vacuum insulation, Multilayer insulation (MLI), Methods of measuring	effective thermal		
conductivity of MLI, Liquid & vapour shield, Evacuated porous insulation, Gas filled			
powders and fibrous materials, Solid foams, Vacuum technology			
CRYOCOOLERS	(07 Hours)		
Ideal Stirling cycle, Design parameters (Schmidt's Analysis), GM cryoco	olers, Pulse Tube		
cryocooler, Phasor Analysis			
CRYOGENIC INSTRUMENTATION	(05 Hours)		
Peculiarities of cryogenic strain measurement, Pressure, Flow, Density,	Temperature and		
liquid level measurement for cryogenic application			

STORAGE & HANDLING SYSTEMS	(04 Hours)
Dewar vessel design, Piping, Support systems, Vessel safety devices and	l storage systems,
Industrial storage systems	
TRANSFER SYSTEMS	(03 Hours)
Transfer from storage, Uninsulated transfer lines, Insulated lines,	Transfer system
components.	
GAS SEPARATION	(02 Hours)
Principles of gas separation, Ideal system	

(Total Lecture Hours: 45)

1	C. Hastlden, Cryogenic Fundamentals, Academic Press, 2001.
2	R. Barron, Cryogenic Systems, Plenum Press, 2001
3	G. Walker, Cryocoolers, Springer, 2014
4	Y. Mikulin, Theory and Design of Cryogenic systems, MIR Publication, 2002.
5	R. F. Barron, Cryogenics Systems, Oxford Press., USA, 2002

MEME118	:	QUALITY ENGINEERING AND MANAGEMENT	L	Т	Р	Credits
			3	0	0	03

CO1	Explain different concepts of quality, system reliability & maintenance and its
	application to the design and manufacturing activities
CO2	Apply statistical concepts and techniques for designing of products and process
	controls
CO3	Describe and apply reliability analysis concepts to selected applications
CO4	Describe and Apply the two level factor factorial design, general factorial design
	and surface response method for experimental design.
CO5	Formulate, analyze, design and synthesize open-ended quality engineering
	problems using the various statistical process control tools and quality management
	tool
CO6	Select and apply newer concepts and initiatives for quality improvement

2. Syllabus:

Introduction	(02 Hours)		
Introduction to quality control and the quality system, some philosophies and their impact			
on quality, Cost of quality, Quality audit.			
Statistical Quality Control	(14 Hours)		
Statistical Concepts and Data analysis: Fundamentals of statistical concepts an	d techniques		
in quality control and improvement, Data analysis and sampling; Control Charts: Statistical			
Process Control using control charts, Control charts for attributes and varial	bles. Process		
capability analysis: Concepts and procedures of Process capability. Acceptance	ce Sampling:		
Acceptance sampling for attributes and variables.			
Reliability Analysis	(05 Hours)		
Reliability: Failure rate analysis, mean failure rate, mean time to failure, mean t	time between		
failure, Graphical representation of Fd, Z and R. Generalization in graphical f	orm, integral		
form, Hazard models, systems reliability, availability, maintenance, overall equipment			
effectiveness, Total Productive Maintenance (TPM), Failure Mode and Eff	ect Analysis		
(FMEA).			

Experimental Design: Fundamentals of experimental Design, Single, Multi factor and 2k	
factor experiments, Two level fractional factorial design, Response surface method. Quality	
loss function.	
Taguchi method: Taguchi method, Design of experiments using orthogonal	l array, Data
analysis from Taguchi and Multi level factor design.	
New Quality Concepts and Initiatives	(12 Hours)
New Quality Concepts and initiatives: Total Quality Management (TQM) and it	ts techniques,
New Seven Management Tools, and Industrial Case studies on Costs of Qua	ality, Five S,
kaizen, Quality Circles, Quality Function Deployment (QFD), Poka Yoke, Total Productive	
Maintenance (TPM), Lean Manufacturing, Six Sigma, Lean Six Sigma, etc. Quality	
Management through Software.	
Quality Standards	(03 Hours)
Quality Standards and Business Excellence Models: Quality System Standards, ISO 9000,	
ISO 14000, various Quality Awards and case studies.	
World Class Manufacturing(01 Hour)	

Manufacturing Excellence World Class Manufacturing (WCM) – Model and elements of WCM.

(Total Lecture Hours: 45)

(08 Hours)

3. <u>Books Recommended:</u>

•

Experimental Design

1	Amitra Amitava, Fundamentals of Quality Control and Improvement, 2nd Ed., Prentice
	Hall of India, 2011
2	K. Krishnaiah and P. Shahabudeen, Applied Design of Experiments and Taguchi
	Methods, Prentice Hall of India, 2012
3	Dale H. Besterfield, Carol Besterfield-Michna, Mary Besterfield-Sacre, Glen H.
	Besterfield, Hemant Urdhwareshe, Rashmi Urdhwareshe, Total Quality Management, ,
	Pearson Education, 2012
4	George W. Cobb, Introduction to Design and Analysis of Experiments, John Wiley &
	Sons, 2015
5	D.C. Montogomery, Design and Analysis of Experiments, John Wiley & Sons, 8th
	Edition 2013

MEME120	:	ADVANCED WELDING TECHNOLOGY	L	Τ	Р	Credits
			3	0	0	03

1. Course Outcomes (COs):

At the end of the course the students will be able to:

CO1	Relate the significance of welding in various industrial sectors.
CO2	Explain the characteristics of welding arc and relate it importance during welding
	process
CO3	Develop the concepts of various advanced welding technologies.
CO4	Analyse the heat flow and metal transfer mechanism in welding.
CO5	Determine the solidification mechanism of weld pool.
CO6	Compile the quality of weldments by monitoring and controlling the process
	through advanced techniques.

2. Syllabus:

Introduction	(04 Hours)		
Welding as compared with other fabrication processes, classification, weld	dability, weld		
configuration, ASME standards for weldments, scope and applications of weld	ling in various		
industrial sectors.			
Physics of Welding Arc	(08 Hours)		
Structure and characteristics of welding arc, methods of arc initiation and maintenance, arc			
stability, voltage distribution along the arc, cathode and anode drops, arc column, thermionic			
and non-thermionic cathode, theories of cathode and anode mechanisms, temperature			
distribution in the arc, arc efficiency, heat generation at cathode and anode, effect of			
shielding gas on arc, isotherms of arcs, arc blow, arc welding power sources	, heat sources		
for solid state welding.			
Advanced Welding Processes	(12 Hours)		

Overview of arc welding processes, flux cored arc welding, plasma transferred arc welding, electro-gas and electro-slag welding, resistance welding, magnetic pulse welding. Theory and mechanism of solid state welding, technique and scope of - friction welding, fiction stir welding, diffusion welding, cold pressure welding, ultrasonic welding, electron beam welding, laser beam welding. Cladding through welding, automation in welding.

Heat Flow and Metal Transfer in Welding

Calculation of peak temperature, width of heat affected zone, cooling rate and solidification rates, weld thermal cycles. Forces, mechanism and types of metal transfer in various arc welding processes, factors controlling melting rate in various welding processes. Residual stresses and their measurement, weld distortion and its prevention.

Solidification of weld pool

(05 Hours)

(08 Hours)

Principle of solidification of weld metal, modes of solidification, effect of welding parameters on weld structure, grain refinement principle of weld metal, method of weld metal refinement: inoculation, arc pulsation, external excitation.

Inspection and Quality Control of Weldments

(08 Hours)

Overview of post weld characterization, weld related discontinuities, Welding Defects, overview of standard destructive and nondestructive testing applicable for weldments, inspection of weldments, importance of welding procedure and performance qualification, monitoring and control of welding processes, welding simulation.

(Total Lecture Hours: 45)

	-
1	P. T. Houdlecroft, "Welding Process Technology", Cambridge University Press, 3rd edition, 2004
2	W. A. Bowditch, K. E. Bowditch, "Welding Technology Fundamentals", Goodheart-Willcox Co. Pub., 1991
3	L. Jeffus, "Welding: Principles and Applications", Cengage Learning Pub., 7th edition, 2011
4	J. F. Lancaster, "Metallurgy of Welding", Springer publications, 6th edition, 2009
5	R. S. Parmar, "Welding Engineering and Technology", Khanna Publishers, 5th edition,
	2013

MEME122	••	DESIGN OF EXPERIMENTS	L	Т	Р	Credits
			3	0	0	03

At the end of the course the students will be able to:

CO1	Formulate objective(s) and identify key factors in designing experiments for a
	given problem.
CO2	Develop appropriate experimental design to conduct experiments for a given
	problem.
CO3	Identify randomization, replication, blocking and degree of freedom based on
	given parameters and their levels
CO4	Analyze experimental data to derive valid conclusions.
CO5	Optimize process conditions by developing empirical models using experimental
	data.
CO6	Design robust products and processes using parameter design approach.

2. Syllabus:

Fundamentals of Experimentation	(06 Hours)		
Role of experimentation in rapid scientific progress, Historical perspective of	experimental		
approaches, Steps in experimentation, Principles of experimentation			
Simple Comparative Experiments	(09 Hours)		
Basic concepts of probability and statistics, Comparison of two means and t	wo variances,		
Comparison of multiple (more than two) means & ANOVA			
Experimental Designs	(08 Hours)		
Factorial designs, fractional factorial designs, orthogonal arrays, standard orthogonal arrays			
& interaction tables, modifying the orthogonal arrays, selection of suitable ort	hogonal array		
design, analysis of experimental data			
Response Surface Methodology	(10 Hours)		
Concept, linear model, steepest ascent, second order model, regression			
Taguchi's Parameter Design(12 Hot			
Concept of robustness, noise factors, objective function & S/N ratios, inner-ar	ray and outer-		
array design, data analysis.			

(Total Lecture Hours: 45)

1	P. J. Ross, Taguchi Techniques for Quality Engineering, McGraw-Hill Book Company, New York, 1st edition, 2008
2	D. C. Montgomery, Design and Analysis of Experiments, John Wiley & Sons, New York, 7th Edition, 2008
3	Jiju Antony, Design of Experiments for Engineers and Scientists, Elsevier, 2nd edition, 2018
4	Colin Hardwick, Practical Design of Experiments, Createspace Independent Publisher, 1st edition, 2013
5	Angela Dean, Max Morris, John Stufken, Derek Bingham. Handbook of Design and Analysis of Experiments. Chapman and Hall/CRC; 1st edition, 2020

MEME124	:	DESIGN AND ANALYSIS OF COMPOSITE STRUCTURES	L	Τ	Р	Credits
			3	0	0	03

At the end of the course the students will be able to:

CO1	Classify types of composite materials.
CO2	Analyse the macro mechanical behaviour of lamina.
CO3	Analyse the micro mechanical behaviour of lamina.
CO4	Analyze the macro mechanical behaviour of laminate.
CO5	Evaluate the bending, buckling and vibration of laminated plate.
CO6	Determine the design requirement of composite materials.

2. Syllabus:

Introduction	(06 Hours)
Classification and characteristics of composite materials, Mechanical	behaviour of
composite materials, Terminology of laminated composite materials, M	anufacture of
laminated composite materials, Applications of composite materials	
Macro-Mechanical Behaviour of a Lamina	(07 Hours)
Stress-strain relationship for anisotropic materials, Stiffness, compliances and	lengineering
constants for orthotropic materials, Relationship on engineering constants, Stu	ress-strain
relationship for plane stress in an orthotropic material, Strength of an orthotro	pic lamina
Micro-Mechanical Behaviour of a Lamina	(06 Hours)
Mechanics of materials approach to stiffness, Elasticity approach to stiffness,	Mechanics of
materials approaches to strength.	
Macro-Mechanics Behaviour of a Laminate	(07 Hours)
Classical laminate theory, Special cases of laminate stiffness, Theoretical ver-	rsus measured
laminate stiffness, Strength of laminates, Interlaminar stresses	
Bending, Buckling and Vibration of Laminated Plates	(10 Hours)
Governing equations for bending, buckling and vibration of laminated plate,	Deflection of
simply supported laminated plates under distributed transverse load, Bucklin	g of laminated
plate, Vibration of laminated plate.	
Introduction to Design of Composite Structures	(09 Hours)
Introduction, Introduction to structural design, Material Selection, Configurat	tion Selection,
Laminate joints, Design requirements and design failure criterion	
	TT 47

(Total Lecture Hours: 45)

1	K. K. Autar. Mechanics of composite materials, 2 nd Edition, CRC Press, 2006.
2	R. M. Jones. Mechanics of composite materials, 2 nd Edition, Taylor and Fransis, 2018.
3	M. M. Kaminski. Computational mechanics of composite materials, Springer, 2005.
4	B. D. Agarwal. Analysis and Performance of Fiber Composites, 3rd Edition, John Wiley
	& Sons, 2006.
5	R. F. Gibson, Principles of Composite Material Mechanics, 4th Edition, CRC Press,
	2016

MEME126	:	COMBUSTION FOR PROPULSION	L	Т	Р	Credits
			3	0	0	03

At the end of the course the students will be able to:

CO1	Analyse the combustion system using principles of thermodynamics.
CO2	Model combustion kinetics and chemical explosion mechanisms
CO3	Explain basic concepts about various types of flames; modelling and application to
	energy systems.
CO4	Analyse combustion characteristics and how these can be measured.
CO5	Illustrate different type of pollutants generated by combustion, their effects on health
	and on the environment and various methods to control it.
CO6	Describe different combustion mechanisms and how these can be efficiently used in
	engineering applications.

2. Syllabus:

Introduction	(04 Hours)				
Introduction to combustion, Applications of combustion, Types of fuel and oxidizers,					
Characterization of fuel, Various combustion mode, Scope of combustion, Fundamental					
laws of transport phenomena, Conservations Equations.					
Thermodynamics of Combustion	(08 Hours)				
Mixture composition, energy and entropy properties of gaseous mixtures, The	ermodynamic				
properties of reacting mixtures, Laws of thermodynamics, Stoichiometry, Thern	nochemistry,				
adiabatic temperature, chemical equilibrium. Conditions of chemical	equilibrium,				
equilibrium constant, challenges in chemical equilibrium.					
Combustion Kinetics	(08 Hours)				
Basic Reaction Kinetics, Elementary reactions, Chain reactions, Multister	ep reactions,				
simplification of reaction mechanism, Global kinetics reaction rate formula, ap	proximations				
for construction of global reaction rate, global rates of hydrocarbon fuels.					
Chemical Mechanisms	(03 Hours)				
Explosive and oxidative characteristics of fuels, Criteria for explosion, Explosion limits					
and oxidation of hydrogen, Carbon monoxide and hydrocarbons.					
Premixed Flames	(06 Hours)				
Laminar premixed flame, laminar flame structure, Stability limits of lan	ninar flames,				
Laminar flame speed, Flame speed measurements, Flame stabilizations,	Ignition and				
quenching, Turbulent flames, turbulent flame speed, external aided ignition	on (spherical				
propagation, plane propagation), auto ignition, flammability limits.					
Diffusion Flames	(06 Hours)				
Laminar Diffusion flames, turbulent diffusion flames, Schvab-Zel'dovich	formulation,				
Burke-Schumann problem, Gaseous Jet diffusion flame, Droplet Combustion, Liquid fuel					
combustion, Atomization, Spray and Solid fuel combustion.					
Combustion and Environment	(04 Hours)				

Atmosphere, Chemical Emission from combustion, Quantification of emission, mechanisms of pollutant formation during combustion, pollutants reduction in conventional combustors, pollutants reduction by control of flame temperature, dry low-oxides of nitrogen combustors, lean premix per vaporize combustion, rich-burn quick-quench lean burn combustor, catalytic combustion, correlations and modelling of oxides of nitrogen and carbon monoxide emission.

Combustion Process in Propulsion Systems

(06 Hours)

Principal ideas of combustion in gas turbine, solid propellant rockets: Erosive burning, and liquid propellant rockets.

(Total Lecture Hours: 45)

1	K. K. Kuo, Principles of Combustion, John Wiley and Sons, 2005
2	S. R. Turns, An introduction to combustion, New York: McGraw-Hill, 2017
3	C. K. Law, Combustion physics, Cambridge University Press, 2010.
4	D. P. Mishra, Fundamentals of Combustion, Prentice Hall of India, 2010
5	H. S. Mukunda, Understanding combustion, Universities Press, 2009.

MEME128	:	DESIGN OF HEAT EXCHANGERS	L	Т	Р	Credits
			3	0	0	03

At the end of the course the students will be able to:

CO1	Identify different types of heat exchangers and understand the basic design
	methodologies
CO2	Design and analyse the double pipe shell and tube heat exchanger
CO3	Design and perform the thermal performance of tube finned and plate finned heat
	exchanger
CO4	Estimate thermal performance of Gasketed and Spiral plate heat exchanger
CO5	Estimate the pressure drop in tubular and extended surface heat exchanger
CO6	Estimate furnace outlet temperature using furnace model

2. <u>Syllabus</u>:

Furnace design

Introduction	(06 hours)
Application of heat exchanger, classification of heat exchanger, design and	simulation of
heat exchanger, Review of heat transfer principles & convection correlation	, Basic design
methodologies, Net Transferable Units method and Logarithmic Mean	Temperature,
Examples	

Design of Tubular Heat Exchanger	(10 hours)			
Heat transfer coefficient, double pipe heat exchanger design, Shell & t	ube type heat			
exchangers, nomenclature, J-factors, conventional design methods, bell, Delaware method				
Design of Extended Surface Heat Exchanger	(15 hours)			
Enhancement of heat transfer compact heat exchanger, Compact heat exchan	gers, J-factors,			
Design method Extended surface heat exchanger, Rating problem of tub	be finned heat			
exchanger, Rating problem of plate finned heat exchanger, Pressure drop ca	lculations and			
tutorials, Sizing problem				
Design of Plate Heat exchangers	(05 hours)			
Introduction, Types of the plate heat exchanger, thermal design of Gaske	ted plate heat			
exchanger, thermal design of spiral plate heat exchanger				
Heat Exchanger Pressure Drop Analysis	(05 hours)			
Importance of pressure drop, Major contributions to the heat exchanger	pressure drop,			
	• • •			
Tubular heat exchanger pressure drop, Extended surface heat exchanger press	ure drop, Plate			

(04 hours)

Design development of Stirred Reactor Furnace model, Estimate the furnace outlet temperature

(Total Lecture Hours: 45)

1	R. K. Shah, and D. P. Sekulic, "Fundamentals of Heat Exchanger Design", John Wiley & Sons, Inc, 2003
2	V. A. Kays, and A. L. London, "Compact Heat Exchangers", McGraw Hill, 2002
3	Holger Martin, "Heat Exchangers" Hemisphere Publ. Corp. Washington, 2001
4	T. Kuppan, "Heat Exchanger Design Handbook", Macel Dekker, Inc., N.Y., 2000
5	Seikan Ishigai, "Steam Power Engineering, Thermal and Hydraulic Design
	Principles", Cambridge Univ. Press, 2001

MEME130	:	NON DESTRUCTIVE TESTING	L	Т	Р	Credits
			3	0	0	03

At the end of the course the students will be able to:

CO1	Explain the basic concept of NDT and its industrial applications
CO2	Select appropriate NDT technique to identify given defect.
CO3	Identify internal flaw in the part and suggest measures to eliminate it
CO4	Analyse available data using modern tools and softwares
CO5	Propose environmental friendly solutions to the industrial problem through NDT
CO6	Identify and overcome limitations of NDT technique through alternative
	techniques

2. Syllabus:

1.	Introduction to NDT, Liquid Penetrant Test	(06 Hours)			
	Physical Principles, Procedure for penetrant testing, penetrant testing	ng materials,			
	Penetrant testing methods, sensitivity, Applications and limitations, typica	l examples.			
2.	Ultrasonic Testing	(08 Hours)			
	Basic properties of sound beam, Ultrasonic transducers, Inspectio	on methods,			
	Techniques for normal beam inspection, Techniques for angle beam insp	pection, Flaw			
	characterization techniques, Applications of ultrasonic testing , Adv	antages and			
	limitations.				
3.	Thermography	(06 Hours)			
	Basic principles, Detectors and equipment, techniques, applications.				
4.	Radiography	(07 Hours)			
	Basic principle, Electromagnetic radiation sources, radiographic imaging, Inspection				
	techniques, applications, limitations, typical examples.				
5.	Eddy Current Test	(06 Hours)			
	Principles, instrumentation for ECT, techniques, sensitivity, advanced eddy	y Current test			
	methods, applications, limitations.				
6.	Acoustic Emission	(06 Hours)			

	Principle of AET, Technique, instrumentation, sensitivity, applicatio	ns, Acoustic
	emission technique for leak detection.	
7.	Magnetic Particle Inspection	(06 Hours)
	Principle of MPT, Procedure used for testing a component, sensitivity, lim	nitations.
		/_

(Total Lecture Hours: 45)

1	Peter J. Shull, Nondestructive Evaluation: Theory, Techniques and Applications, Marcel Dekkar, 1st edition, 2002
2	Ravi Prakash, Non Destructive Testing Techniques, New Age International Publishers, 1st edition, 2010
3	M. Sadashiva, Non Destructive Testing, Notion Press, 1st edition, 2021
4	ASM Metals Hand Book, Non Destructive Testing and Quality Control, Vol. 17, ASM, 1989
5	Mix Paul, Introduction to NDT: A training guide, John Wiley and Sons, 2nd edition, 2005

MEME172	:	INDUSTRIAL SAFETY	L	Т	Р	Credits
			3	0	0	03

At the end of the course the students will be able to:

CO1	Describe causes of accidents and their consequences, and applicable safety laws
CO2	Identify hazards and manage risk
CO3	Measure safety performance
CO4	Formulate safety and health policy
CO5	Conduct the accident investigation
CO6	Establish fire control system

2. Syllabus:

INTRODUCTION	(04 Hours)					
Accident fatalities across the globe, nature of industry, review of accident statistics in India, types of injuries, causes of accidents, consequences of accidents, responsibilities of stakeholders						
Accident causation theories:	(07 Hours)					
Accident proneness theories, Goals- Freedom-Alertness theory, adjustmen	t stress theory,					
theory of mental stress, dominoes theories, chain of events theory, distracti	on theory, the					
human error-causation model, behaviour theory						
Hazard identification and risk assessment:	(07 Hours)					
Types of hazards, identification of hazards and risk, risk analysis, risk e	valuation, risk					
ranking, risk acceptance, risk control, , and risk transfer, A priori risk estimat	es, ergonomics					
and cognitive assessment methods, task demand assessment methods						
Measurement of safety performance: (05 Hours)						
Reactive indicators, proactive indicators,						
permanent total disabilities, permanent partial disabilities, temporary total disabilities,						
computations of accident indices, problems						
Safety and health management policy:(04 Hours)						
Safety policy, budget, organization, inspection, audit, education and training	g, safety health					
and environment plan, safety manual, committee, incentive programmes	•					
Accident investigation and analysis methods:	(06 Hours)					
Accident investigation, reporting, record keeping, gathering information of	accident, root					
cause analysis, fault tree analysis, failure modes and effect analysis, hazard a	and operability					
study review, etc., case study						
Safety laws :	(06 Hours)					
History of safety acts in India, the factory Act, 1948, the building and other	er construction					
workers Act, 1996, occupational safety health and working condition code, 2020, the						

contract labour Act, 1970, the hazardous wastes rules, 1989, motor vehicle Act,1988, the industrial relations code bill, 2020, the code on social security bill,2020, etc.

Fire Safety Management:(06 Hours)Fire properties of solid, liquid and gases, Sources of ignition, fire triangle, principles of fire
extinguishing, active and passive fire protection systems, various classes of fires, types of fire
controlling apparatus, industrial fire protection system, explosive protection system

(Total Lecture Hours: 45)

3. Books Recommended:

1	L. M. Deshmukh, Industrial safety management. New Delhi: Tata McGraw Hill, 2010
2	B. S. Dhillon, Applied Safety for Engineers: Systems and Products. CRC Press, 2022
3	D. L. Goetsch, Occupational Safety and Health for Technologists, Engineers and Managers, Pearson Education, Inc., Upper Saddle River, New Jersey 2005
4	H. W. Heinrich, Industrial Accident Prevention. A Scientific Approach. Industrial Accident Prevention. A Scientific Approach., (Second Edition), 1941
5	K. N. Jha, D. A. Patel, A. Singh, Construction safety management, Pearson India Education Services Pvt. Ltd., Noida (India), 2022

MEME174	:	INTELLIGENT MANUFACTURING SYSTEMS	L	Т	Р	Credits
			3	0	0	03

At the end of the course the students will be able to:

CO1	Explain the need and capability of AI based manufacturing system
CO2	Identify the characteristics and components of knowledge based expert systems
CO3	Apply probability and fuzzy logic for machine thinking
CO4	Apply the ANN modeling to identified manufacturing problem
CO5	Develop the knowledge based GT for selected automation system
CO6	Design an intelligent system for various manufacturing systems

2. Syllabus:

Concepts of Artificial Intelligence	(09 Hours)				
Origin of Artificial Intelligence, Human and machine Intelligence, Branches of artificial					
intelligence, Programming in AI environment, Emergence of expert systems, Applications					
in Engineering and Manufacturing, Intelligent Manufacturing System	ns – System				
components, System Architecture and Data Flow and System Operation					
Knowledge Based Systems/Expert Systems	(14 Hours)				
Expert systems: Expert system process, characteristics and components of ex-	xpert systems,				
Knowledge Acquisition: Knowledge acquisition phases, Methods of extracting	ng knowledge				
from experts, Knowledge acquisition meetings, Group knowledge acquisition	n, Knowledge				
Representation: Characteristics of knowledge, Knowledge representation mod	lels,				
Concepts of knowledge sets and Reasoning models. Expert system justification	ion and future				
directions for expert systems					
Machine Learning	(10 Hours)				
Machine Learning - Concept, Artificial Neural Networks, Biological and Arti	ficial Neuron,				
Types of Neural Networks, Applications in manufacturing, Use of probability and fuzzy					
logic for machine thinking.					
Knowledge Based Group Technology (08 Hours)					
Group Technology: Models and Algorithms - Visual method, Coding method, Cluster					
analysis method, Knowledge based group technology - Group technology in automated					
manufacturing system, Structure of knowledge based system for group technology (KBSGT)					
 Database, Knowledge base, Clustering algorithm 					
Industrial Applications of AI	(04 Hours)				

Intelligent system for design, equipment selection, scheduling, material	
selection, maintenance, facility planning and process control	

(Total Lecture Hours: 45)

1	Michael Negnevitsky, Artificial Intelligence: A guide to Intelligent systems, Pearson, 3rd edition, 2020
2	A. B. Badiru, Expert Systems Applications in Engineering and Manufacturing, Prentice- Hall, New Jersey, 1992
3	Andrew Kussiak, Intelligent Manufacturing Systems, Prentice Hall, 1990
4	Kishan Mehrotra, Elements of Artificial Neural Network, Penram International Publishing Pvt Ltd; 2nd edition, 2009
5	Rajendra Akerkar, Knowledge based Systems, Jones & Bartlett, 1st edition, 2009

MEME176	:	ENERGY CONSERVATION MANAGEMENT AND AUDIT	L	Т	Р	Credits
			3	0	0	03

At the end of the course the students will be able to:

CO1	Apply various energy conservation techniques to estimate energy saving potential				
	in various thermal and electrical utilities				
CO2	Compare various appliances/utilities based on their stars and labelling,				
	benchmarking values, PAT Scheme in industries				
CO3	Calculate the usage of energy for a given industrial thermal/electrical utility and				
	suggest suitable way to minimize energy bill				
CO4	Analyse the saving potential of Cogeneration option for process industry				
CO5	Determine Energy conservation potential in various industrial utilities like fans,				
	blowers, compressors, pumps etc.				
CO6	Compute various performance parameters of HVAC systems and suggest suitable				
	ways for improving energy efficiency				

2. Syllabus:

Global and National Energy Scenario	(10 Hours)		
Energy consumption in various sectors, Energy resources like Coal, Oil and Natural Gas			
their demand and supply management, Indian energy scenario, Indian Coal & LPG scenario			
Primary and Secondary Sources of Energy, Commercial and Non-Commercial So			
India's installed energy capacity, per capita energy consumption. General aspects of			
conservation and management, Roles of energy auditors, Roles of energy manager, Ener			
policy of industry, Energy Conservation Act and its amendments, PAT Scheme. Star a			
Labelling			
Energy Efficiency in Boiler, Steam And Furnace System Utilities	(08 Hours)		

Energy conservation opportunities in boiler systems, retrofitting of FBC in conventional boilers, Steam line distribution standard practices including sizing and layouts, selection, operation and maintenance of steam traps, energy saving opportunities in steam systems.

Energy Efficiency in Furnaces and Refractories					
Sankey diagram, Fuel economy measures in furnaces Insulation and Refractories: Types of					
insulations, Economic thickness of insulation, Typical refractories f	or industrial				
applications. Benchmarking in Glass and Steel Industries.					

Cogeneration

Principle of cogeneration, technical options for cogeneration, Factors influencing cogeneration choice, Important technical parameters for cogeneration, case study on savings with and without cogeneration

Energy Conservation in Fans, Blowers, Co	mpressors and Pump Systems (10 Hours)
--	---------------------------------------

(06 Hours)

Energy saving opportunities, performance evaluation and efficient system operation.

Air Systems: Efficient operation of Fans, Blowers and compressed air system, Energy conservation opportunities in Fans, Blowers and Compressors. Compressor Leakage tests.

Pumps and Pumping Systems: Pump curves, factors affecting pump performance, Energy loss in throttling, Effects of impeller diameter change, Flow control strategy, Variable speed drives, Energy conservation opportunities.

Energy Conservation in HVAC and Cooling Towers	
--	--

(05 Hours)

(Total Lecture Hours: 45)

1	General Aspects of Energy Conservation, Management and Audit: Guide Book for
	Energy Managers and Energy Auditors; Bureau of Energy Efficiency, Ministry of
	Power
2	Energy Efficiency in Electrical Utilities: Guide Book for Energy Managers and Energy
	Auditors; Bureau of Energy Efficiency, Ministry of Power
3	Energy Efficiency in Thermal Utilities: Guide Book for Energy Managers and Energy
	Auditors; Bureau of Energy Efficiency, Ministry of Power
4	S. A. Roosa, Energy Management Handbook, Fairmont Press, 2018
5	Wayne C Turner, Energy Management Handbook. Prentice Hall 3rd Edition, 2000

MEME178	:	ENERGY AND BUILDINGS	L	Т	Р	Credits
			3	0	0	03

At the end of the course the students will be able to:

CO 1	express the importance of climate, building and energy.
CO 2	illustrate daylight and lightings for energy efficiency perspective.
CO 3	analyze ventilation and air quality in buildings.
CO 4	estimate building load and develop methods to reduce it.
CO 5	evaluate energy efficiency in buildings.
CO 6	distinguish green building rating systems, life cycle and environmental assessments
	and contribution of renewable energy.

2. <u>Syllabus</u>:

Introduction	(05 hours)				
Understanding building energy use, concepts of energy efficiency potential in buildings,					
effect of climates on building energy usage.					
Daylight and lighting in buildings	(05 hours)				
Introduction, Types of technology, design considerations, operation and	maintenance,				
relevant codes and standards.					
Ventilation and air quality in buildings	(09 hours)				
Types of ventilation systems, Passive and active methods of heating and coo	ling with their				
layouts, performance of room air distribution systems, cooling comfort in hot	layouts, performance of room air distribution systems, cooling comfort in hot climates.				
Estimation of building loads (12 hours)					
Steady state method, Network method, Numerical method, Correlations, Computer packages					
for carrying out thermal design of buildings and predicting performance.					
Energy Efficiency in buildings	(06 hours)				
Energy efficient building technologies, energy efficiency policies, Building codes and					
standards, energy efficient building operation, evaluation of energy efficiency.					

Advances in Building:	

(08 hours)

Life cycle perspective and environmental assessment of buildings. Renewable Energy in Buildings; Sustainable Building Rating Systems

(Total Lecture Hours: 45)

1	David Thorpe, Energy Management in Buildings The Earthscan Expert Guide, , 1st Ed, Routledge, 2014
2	Mili Majumdar, Energy-efficient Buildings in India, , The Energy and Resources Institute (TERI), 2001
3	Sofia-Natalia Boemi, OlatzIrulegi, Mattheos Santamouris, Energy Performance of Buildings, Energy Efficiency and Built Environment in Temperate Climates., Springer Nature, 2016
4	Andreas Athienitis, William O'Brien, Modeling, Design, and Optimization of Net-Zero Energy Buildings, First published, Wiley, 2015
5	Bruce D. Hunn and Charles B. Fundamentals of Building Energy Dynamics: 4 (Solar Heat Technologies): Volume 4, The MIT Press, 1996

MEME180	:	INSTRUMENTATION AND EXPERIMENTAL METHODS	L	Т	Р	Credits
			3	0	0	03

At the end of the course the students will be able to:

CO1	Analyze functional stage and transducers
CO2	Explain model measuring and instrument responses.
CO3	Analyze experimental errors, uncertainties, and appropriate test methods.
C04	Explain advancements in sensor and transducer technology.
CO5	Assess data acquisition and signal processing systems
CO6	Illustrate flow and temperature measurement devices

2. Syllabus:

Significance of Measurement and Instrumentations			
Introduction, generalized configuration and functional stages of measuring systems, the			
transducer and its environment, an overview, sensing process and physical laws, Types of			
measurement problems. Transducer classification and their modelling, characteristics of			
instruments, design and selection of components of a measuring system.			
Dynamic Response of Instruments	(05 Hours)		
Mathematical model of a measuring system, response of general form of in	struments to		
various test inputs; time domain and frequency domain analysis Elementary transfer			
functions, Bode plots of general transfer functions.			
Errors in Measurement and Uncertainty in measurements	(08 Hours)		
Errors in instruments, Causes and types of experimental errors, Analysis of ex	Errors in instruments, Causes and types of experimental errors, Analysis of experimental		
data and determination of overall uncertainties in experimental investigation, U	Uncertainties		
in measurement of measurable parameters like pressure, temperature, flow etc. under			
various conditions, Estimation for design and selection for alternative test methods.			
Transducers	(08 Hours)		
Developments in sensors, detectors and transducer technology, displacement transducers;			
force, torque and motion sensors, piezoelectric transducers, capacity type transducers,			
Strain gauge transducers, Accelerometers, pressure transducers based on elastic effect of			
volume and connecting tubing. Transducers for Position, speed, vibration, sound,			
humidity, and moisture measurement, Hall effect Transducer.			
Data Acquisition and Signal Processing	(06 Hours)		
Systems for data acquisition and processing modules and computerized data system			
digitization rate, time and frequency domain representation of signals, and Nyquist criterion			
a brief description of elements of mechatronics modular approach to mechatronics and			

69

engineering design.

Advanced Flow Measurements

Basic flow meters, magnetic, ultrasonic flow meters, Flow visualization, shadowgraph, Schlieren and interferometric techniques, Pitot static tubes; hot wire anemometers, flow measuring problems, Laser Doppler velocity meter, flow measurements using coriolis effect.

Temperature Measurements

Modes of heat transfer, laws of conduction, convection and radiation, Temperature scales, classification of Temperature Sensors, Overview of Temperature Sensor Material, Expansion thermometers, filled system thermometers Thermoelectric sensors, electric resistance sensors; thermistors, Electrical temperature instruments, thermocouples, RTD, and thermistors, Pyrometers, IR temperature detectors, radiations pyrometers, Temperature measuring problems in flowing fluids, dynamic compensation

(Total Lecture Hours: 45)

3. <u>Books Recommended:</u>

1	J. P. Holman, "Experimental methods for engineers", McGraw Hill, NY, USA, 2017
2	E. O. Doebelin and D. N. Manik "Measurement systems: application and design", McGraw Hill, NY, USA, 2019
3	S. P. Venktesh "Mechanical measurements", John Wiley & Sons Ltd, USA, 2021
4	R. Goldstein "Fluid mechanics measurements," Taylor & Francis, USA, 2017
5	M. R. Sheldom, "Introduction to probability and statistics for engineers and scientist", Elsevier, 5 th edition, Amsterdam, Netherland, 2014

(07 Hours)

(06 Hours)

MEME106	:	MINI PROJECT	L	Т	Р	Credits
			0	0	4	02

At the end of the course the students will be able to:

CO 1	Relate with latest areas of Mechanical Engineering
CO 2	Survey field problems pertaining to mechanical engineering
CO 3	Improve & augment skills with hands on training
CO 4	Utilize various software skills to design, develop the product before fabrication
CO 5	Analyze the computation results with experimental results
CO 6	Create technical report & defend with presentation on the chosen area of mini project

Note: The students are expected to identify the prospective faculty for the proposed mini project work. The PG In-charge will float the form and prepare the list of students and prospective faculty for mini project at the beginning of the given semester. The concern faculty will take periodic review of the progress of work. The candidate is supposed to submit the report based on the mini project work assigned by concerned faculty. The faculty will evaluate the same at his/her level and will submit the marks. The report will be kept for record purpose.